Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Theo mối quan hệ giữa cạnh và góc trong tam giác:
\(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
b) Dễ thấy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\Rightarrow AB=CD\)
Do AC > AB nên AC > CD.
Xét tam giác ACD có AC > CD nên \(\widehat{CDA}>\widehat{CAD}\)
c) Do \(\Delta ABM=\Delta DCM\Rightarrow\widehat{CDA}=\widehat{BAD}\)
Vậy nên \(\widehat{BAM}>\widehat{CAM}\)
Suy ra tia phân giác AJ nằm trong góc BAM hay nằm ngoài góc CAM.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (Định lý tổng ba góc trong một tam giác)
⇔ \(\widehat{A}+65^o+65^o=180^o\)
⇔\(\widehat{A}+130^o=180^o\)
⇔\(\widehat{A}=180^o-130^{o^{ }}\)
⇔\(\widehat{A}=50^o\)
Hay \(\widehat{BAC}=50^o\)
b) Vì \(Am\) // BC (gt)
⇔\(\widehat{CAm}=\widehat{C}\) (vì 2 góc so le trong)
mà \(\widehat{C}=65^o\) (gt)
⇔\(\widehat{CAm}=65^o\)
Vì AC nằm giữa tia AB và Am
⇔\(\widehat{BAC}+\widehat{CAm}=\widehat{BAm}\)
⇔\(50^o+65^o=\widehat{BAm}\)
⇔\(\widehat{BAm}=115^o\)
Ta có \(\widehat{BAm}+\widehat{nAm}=180^o\) (vì 2 góc kề bù)
⇔ \(115^o+\widehat{nAm}=180^o\)
⇔\(\widehat{nAm}=180^o-115^o\)
⇔\(\widehat{nAm}=65^o\)
mà \(\widehat{CAm}=65^o\) (cmt)
⇔\(\widehat{nAm}=\widehat{CAm}=65^o\)
⇔Am là tia phân giác của \(\widehat{nAC}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: góc C=180-80-60=40 độ
góc A>góc B>góc C
=>BC>AC>AB
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
c: Xét ΔDMC và ΔDAH có
góc DMC=góc DAH
DM=DA
góc MDC=góc ADH
=>ΔDMC=ΔDAH
=>DC=DH
a) MC=MN+NC=1+4=5cm
vì M là trung điểm BC: BC=MC.2=5.2=10cm
b) NAC=BAC-BAN=80-45=35 độ