K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔABC có AM là phân giác ngoài tại A

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)

Xét ΔCMA có BN//MA

nên \(\dfrac{BC}{BM}=\dfrac{CN}{NA}\)

=>\(\dfrac{BC+BM}{BM}=\dfrac{CN+NA}{NA}\)

=>\(\dfrac{MC}{BM}=\dfrac{CA}{NA}\)

=>\(\dfrac{MB}{MC}=\dfrac{NA}{CA}\)

mà \(\dfrac{MB}{MC}=\dfrac{BA}{AC}\)

nên \(\dfrac{NA}{CA}=\dfrac{BA}{AC}\)

=>NA=BA

* Vì bạn đang cần gấp cho câu b nên mình chỉ giải câu b thôi nhé ^^
Theo giả thiết, ta có AM // BN. Do đó, theo định lý về đường song song, ta có:
$\frac{AB}{AC} = \frac{AN}{NC} \tag{1}$
Tuy nhiên, do AM là tia phân giác góc ngoài tại A của tam giác ABC, ta có:
$\frac{AB}{AC} = \frac{BM}{MC} \tag{2}$
Từ (1) và (2), ta có:
$\frac{AN}{NC} = \frac{BM}{MC}$
Do đó, AN = BM.
Nhưng BM = BA (do M là điểm nằm trên tia đối của BA), nên AN = BA.
Vậy, AB = AN. 

Xét ΔABC có AM là phân giác góc ngoài tại đỉnh A

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)

=>\(MB\cdot AC=MC\cdot AB\)

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

22 tháng 9 2023

 

A'q

22 tháng 9 2023

Asqwoiewoirewn9r9wer9we9r9ewr89ew8r90we8r

s

15 tháng 7 2017

mình k biết

3 tháng 2 2018

bài 1 sai đề rồi bạn. Nếu BEMD là ht cân thật thì \(\widehat{ABC}=\widehat{MDB}\)mà \(\widehat{MDB}=\widehat{ACB}\)(đồng vị) => \(\widehat{ABC}=\widehat{ACB}\)=> tam giác ABC cân( trái với đề bài)

3 tháng 4 2018

Nhưng ngta đâu có ns là tam giác ABC ko đc cân đâu :3

25 tháng 7 2016

+ Ta có

MN//BC => BMNC là hình thang (theo định nghĩa)

Ta m giác ABC cân tại A => ^ABC = ^ACB

=> BMNC là hình thang cân

+ Xét tam giác MBI có

^MIB = ^IBC (góc so le trong) (1)

^IBC = ^IBM (BI là phân giác ^B) (2)

Từ (1) và (2) => tam giác MBI cân tại M => MI = MB (*)

+ Xét tam giác NCI chứng minh tương tự ta cũng có NI = NC (**)

Từ (*) và (**) => MI + NI = MB + NC => MN = MB + NC (dpcm)