K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔABC có AM là phân giác ngoài tại A

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)

Xét ΔCMA có BN//MA

nên \(\dfrac{BC}{BM}=\dfrac{CN}{NA}\)

=>\(\dfrac{BC+BM}{BM}=\dfrac{CN+NA}{NA}\)

=>\(\dfrac{MC}{BM}=\dfrac{CA}{NA}\)

=>\(\dfrac{MB}{MC}=\dfrac{NA}{CA}\)

mà \(\dfrac{MB}{MC}=\dfrac{BA}{AC}\)

nên \(\dfrac{NA}{CA}=\dfrac{BA}{AC}\)

=>NA=BA

* Vì bạn đang cần gấp cho câu b nên mình chỉ giải câu b thôi nhé ^^
Theo giả thiết, ta có AM // BN. Do đó, theo định lý về đường song song, ta có:
$\frac{AB}{AC} = \frac{AN}{NC} \tag{1}$
Tuy nhiên, do AM là tia phân giác góc ngoài tại A của tam giác ABC, ta có:
$\frac{AB}{AC} = \frac{BM}{MC} \tag{2}$
Từ (1) và (2), ta có:
$\frac{AN}{NC} = \frac{BM}{MC}$
Do đó, AN = BM.
Nhưng BM = BA (do M là điểm nằm trên tia đối của BA), nên AN = BA.
Vậy, AB = AN. 

Xét ΔABC có AM là phân giác góc ngoài tại đỉnh A

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)

=>\(MB\cdot AC=MC\cdot AB\)

15 tháng 7 2017

mình k biết

3 tháng 2 2018

bài 1 sai đề rồi bạn. Nếu BEMD là ht cân thật thì \(\widehat{ABC}=\widehat{MDB}\)mà \(\widehat{MDB}=\widehat{ACB}\)(đồng vị) => \(\widehat{ABC}=\widehat{ACB}\)=> tam giác ABC cân( trái với đề bài)

3 tháng 4 2018

Nhưng ngta đâu có ns là tam giác ABC ko đc cân đâu :3

28 tháng 2 2020

Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N

a) Tính độ dài các đoạn thẳng AN, CN.

b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN

. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?

25 tháng 7 2016

+ Ta có

MN//BC => BMNC là hình thang (theo định nghĩa)

Ta m giác ABC cân tại A => ^ABC = ^ACB

=> BMNC là hình thang cân

+ Xét tam giác MBI có

^MIB = ^IBC (góc so le trong) (1)

^IBC = ^IBM (BI là phân giác ^B) (2)

Từ (1) và (2) => tam giác MBI cân tại M => MI = MB (*)

+ Xét tam giác NCI chứng minh tương tự ta cũng có NI = NC (**)

Từ (*) và (**) => MI + NI = MB + NC => MN = MB + NC (dpcm)

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành