Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AM là phân giác góc ngoài tại đỉnh A
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)
=>\(MB\cdot AC=MC\cdot AB\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Vậy: BC=35cm
Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)
hay AH=16,8(cm)
Vậy: BC=35cm; AH=16,8cm
a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))
\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)
\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)