K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Xét ΔBAM và ΔBDM có

BA=BD

\(\widehat{ABM}=\widehat{DBM}\)

BM chung

Do đó: ΔBAM=ΔBDM

=>\(\widehat{BAM}=\widehat{BDM}\)

mà \(\widehat{BAM}=90^0\)

nên \(\widehat{BDM}=90^0\)

b: Ta có; ΔBAM=ΔBDM

=>MA=MD

Xét ΔMAE vuông tại A và ΔMDC vuông tại M có

MA=MD

AE=DC

Do đó: ΔMAE=ΔMDC

=>\(\widehat{AME}=\widehat{DMC}\)

mà \(\widehat{AME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{DMC}+\widehat{EMC}=180^0\)

=>\(\widehat{DME}=180^0\)

=>D,M,E thẳng hàng

a) Ta có: \(BC^2=13^2=169\)

\(AB^2+AC^2=5^2+12^2=169\)

Do đó: \(BC^2=AB^2+AC^2\)(=169)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

24 tháng 7 2019

A B C D E I O

a, xét tam giác BAE và tam giác BDE có : BE chung

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

AB = BD (gt)

=> tam giác BAE = tam giác BDE (c-g-c)

b, tam giác BAE = tam giác BDE (câu a)

=> góc BAE = góc BDE (đn)

mà óc BAE = 90 do tam giác ABC vuông tại A (gt)

=> góc BDE = 90 

=> ED _|_ BC (đn)

c, tam giác BAE = tam giác BDE (Câu a)

=> AE = DE (đn)

d,  gọi BE cắt CI tại O 

AB = BD (gt)

AI = DC (gt)

AB + AI = BI 

BD + DC = BC

=> BI = BC 

xét tam giác IOB và tam giác COB có : OB chung

góc IBO = góc CBO do BO là phân giác của góc IBC (gt)

=> tam giác IOB = tam giác COB (c-g-c)

=> góc IOB = góc COB (đn)

mà góc IOB + góc COB = 180 (kb)

=> góc IOB = 180 : 2 = 90 

=> BO _|_ CI (đn)

CA _|_ AB do góc BAC = 90 

xét tam giác IBC 

=> ID _|_ BC (tc)

mà ED _|_ BC (câu b)

=> I; E; D thẳng hàng

21 tháng 5 2019

c. Vì ΔABD = ΔAED ⇒ BD = DE (hai cạnh tương ứng)(0.5 điểm)

Vì ∠(xBC) là góc ngoài của tam giác ABC nên ∠(xBC) > ∠C (0.5 điểm)

Mà ∠(xBC) = ∠(DEC) ̂⇒ ∠(DEC) > ∠C (0.5 điểm)

Trong tam giác ΔDEC có ∠(DEC) > ∠C ⇒ DC > DE mà DE = BD (0.5 điểm)

Suy ra DC > BD (0.5 điểm)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD