Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM và ΔBDM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔBAM=ΔBDM
=>\(\widehat{BAM}=\widehat{BDM}\)
mà \(\widehat{BAM}=90^0\)
nên \(\widehat{BDM}=90^0\)
b: Ta có; ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAE vuông tại A và ΔMDC vuông tại M có
MA=MD
AE=DC
Do đó: ΔMAE=ΔMDC
=>\(\widehat{AME}=\widehat{DMC}\)
mà \(\widehat{AME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{EMC}=180^0\)
=>\(\widehat{DME}=180^0\)
=>D,M,E thẳng hàng
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a, xét tam giác BAE và tam giác BDE có : BE chung
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
AB = BD (gt)
=> tam giác BAE = tam giác BDE (c-g-c)
b, tam giác BAE = tam giác BDE (câu a)
=> góc BAE = góc BDE (đn)
mà óc BAE = 90 do tam giác ABC vuông tại A (gt)
=> góc BDE = 90
=> ED _|_ BC (đn)
c, tam giác BAE = tam giác BDE (Câu a)
=> AE = DE (đn)
d, gọi BE cắt CI tại O
AB = BD (gt)
AI = DC (gt)
AB + AI = BI
BD + DC = BC
=> BI = BC
xét tam giác IOB và tam giác COB có : OB chung
góc IBO = góc CBO do BO là phân giác của góc IBC (gt)
=> tam giác IOB = tam giác COB (c-g-c)
=> góc IOB = góc COB (đn)
mà góc IOB + góc COB = 180 (kb)
=> góc IOB = 180 : 2 = 90
=> BO _|_ CI (đn)
CA _|_ AB do góc BAC = 90
xét tam giác IBC
=> ID _|_ BC (tc)
mà ED _|_ BC (câu b)
=> I; E; D thẳng hàng
c. Vì ΔABD = ΔAED ⇒ BD = DE (hai cạnh tương ứng)(0.5 điểm)
Vì ∠(xBC) là góc ngoài của tam giác ABC nên ∠(xBC) > ∠C (0.5 điểm)
Mà ∠(xBC) = ∠(DEC) ̂⇒ ∠(DEC) > ∠C (0.5 điểm)
Trong tam giác ΔDEC có ∠(DEC) > ∠C ⇒ DC > DE mà DE = BD (0.5 điểm)
Suy ra DC > BD (0.5 điểm)
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
DO đó: ΔABE=ΔADE
b: Ta có: ΔABD cân tại A
mà AI là đường phân giác
nên I là trung điểm của BD