K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

D B C E F A

Bài làm:

a) Vì \(\widehat{B}=\widehat{C}\)=> Tam giác ABC cân tại A

Mà AD là đường phân giác xuất phát từ đỉnh của tam giác cân ABC

=> AD đồng thời là đường trung trực của tam giác ABC

=> AD _|_ BC và BD = DC

b) Ta có: \(\hept{\begin{cases}BD=DC\\BE=CF\end{cases}\Rightarrow}BD+BE=DC+CF\)

\(\Leftrightarrow DE=DF\)

=> AD là trung tuyến của tam giác AEF, mà AD là đường cao của tam giác AEF

=> Tam giác AEF cân tại A

=> AF = AE và AD là trung trực EF

26 tháng 8 2020

A E F B D C

a)

\(\Delta ABC\)có \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)cân tại A

\(\Rightarrow AB=AC\)

AD là đường phân giác đồng thời là đường cao của \(\Delta ABC\)

\(\Rightarrow AD\perp BC\left(đpcm\right)\)

b)

\(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABE}=\widehat{ACF}\)(lần lượt kề bù với \(\widehat{ABC}và\widehat{ACB}\)

Xét \(\Delta ABE\)và \(\Delta ACF\)có:

\(AB=AC\left(cmt\right)\)

\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)

\(BE=CF\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACF\left(c.g.c\right)\)

\(\Rightarrow AE=AF\)(2 cạnh tương ứng)

Lại có:

\(\widehat{BAE}+\widehat{BAD}=\widehat{CAF}+\widehat{CAD}\)

\(\Rightarrow\widehat{EAD}=\widehat{FAD}\)

\(\Rightarrow AD\)là phân giác của \(\Delta AEF\)

Mà \(\Delta AEF\)cân tại A

\(\Rightarrow AD\)đồng thời là đường trung trực của \(\Delta AEF\)

Vậy AD là đường trung trực của EF (đpm)

#Cừu