Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trên BC lấy điểm A' và A'' sao cho BA' = BA; BA'' = BD
Do BD là phân giác góc ABA' nên ta có ngay \(\Delta ABD=\Delta A'BD\left(c-g-c\right)\)
\(\Rightarrow AD=A'D\) ; \(\widehat{BA'D}=\widehat{BAD}=180^o-40^o.2=100^o\)
\(\Rightarrow\widehat{DA'A''}=80^o\)
Xét tam giác cân BDA'' có: \(\widehat{DBA''}=20^o\Rightarrow\widehat{BA''D}=\frac{180^o-20^o}{2}=80^o\)
Suy ra DA' = DA'' và \(\widehat{A''DC}=\widehat{DA''A'}-\widehat{ACB}=40^o\)
Nên DA'' = CA''
Tóm lại thì AD = DA' = DA'' = A''C nên BC = BA''+ A''C = BD + AD
b) Vẽ tam giác đều AMF.
Ta có ngay \(\widehat{MAF}=60^o\Rightarrow\widehat{CAF}=100^o-60^o=40^o\)
Suy ra \(\Delta ABC=\Delta CAF\left(c-g-c\right)\)
\(\Rightarrow AC=CF\)
Từ đó ta có \(\Delta AMC=\Delta FMC\left(c-c-c\right)\)
\(\Rightarrow\widehat{AMC}=\widehat{FMC}\) hay MA là phân giác óc AMF.
Vậy nên \(\widehat{MAC}=30^o\)
sai ở đâu vậy ạ bạn cho mình xin ý kiến . Cảm ơn !
mình không biết mình có ns sai hay đúng nhưng nếu vẽ hình thì BC không bằng BD . Mong bạn giúp
A) Xét tam giác ABD và tam giác EBD có
BD ( cạnh chung )
\(\widehat{CBD}\)= \(\widehat{ABD}\)( giả thiết )
\(\Rightarrow\)tam giác ABD = tam giác EBD ( cạnh huyền - góc nhọn )
\(\Rightarrow\)DA=DE ( hai cạnh tương ứng )
b) mà theo phần a ta lại có : \(\widehat{EDB}\)=\(\widehat{EDB}\)( hai góc tương ứng )
mà \(\widehat{ADF}\)=\(\widehat{EDC}\)( hai góc đối đỉnh )
\(\Rightarrow\)\(\widehat{CDB}\)=\(\widehat{FDB}\)( Theo hai cm trên )
BD ( cạnh chung )
\(\widehat{EBD}\)=\(\widehat{ABD}\)( giả thiết )
vậy suy ra tam giác BDF = tam giác BDC ( G-C-G)
C) Theo phần a ta có AD =ED
B ta lại có :FD = DC
suy ra tứ giác AECF là hình thang cân
suy ra AE song song FC
hình vẽ :
B A C D E 1 2
giải :
a, xét \(\Delta ABC\) và \(\Delta EBD\)có :
AB = EB ( do BC = 2AB )
\(\widehat{B_1}=\widehat{B_2}\) ( gt )
BD cạnh chung
\(\Rightarrow\Delta ABC=\Delta EBD\left(c.g.c\right)\)
do đó \(\widehat{ADB}=\widehat{EDB}\)
=> DB là tia phân giác của \(\widehat{ADE}\)
b, xét tam giác ABD và tam giác EBD có :
AB = EB ( gt )
\(\widehat{B_1}=\widehat{B_2}\)
BD cạnh chung
=> tam giác ABD = tam giác EBD ( c.g.c )
=> \(\widehat{DEB}=\widehat{DAB}=90^0\) Mà \(\widehat{DEB}+\widehat{DEC}=180^0\)
\(\Rightarrow\widehat{AEC}=90^0\)
Xét tam giác EDB và EDC có :
EB = EC ( gt )
\(\widehat{DEB}=\widehat{DEC}=90^0\)
ED chung
=> tam giác EDB = tam giác EDC ( c.g.c )
=> DB = DC Và \(\widehat{C}=\widehat{B}_2\)
c, ta có : \(\widehat{B_1}=\widehat{B}_2\) mà \(\widehat{B_2}=\widehat{C}\) Do đó \(\widehat{B}+\widehat{B_1}+\widehat{B_2}=2\widehat{C}\)
Trong tam giác vuông ABC thì \(\widehat{B}+\widehat{C}=90^0\) Hay \(3\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=30^0;\widehat{B}=30^0.2=60^0\)