Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
*Chứng minh DC=BE
Ta có: DC=CA+DA(A nằm giữa C và D)
BE=AB+AE(A nằm giữa B và E)
mà AB=AD(ΔABD vuông cân tại A)
và CA=AE(ΔACE vuông cân tại A)
nên DC=BE(đpcm)
*Chứng minh DC⊥BE
Ta có: AB⊥AC(ΔABC vuông tại A)
mà E∈AB
và D∈AC
nên DC⊥BE(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
cau a phai la tamgiac HBA = tamgiac AMD phai k
phai thi tu ve hinh :
a, DM | IH (GT) va AH | BH (GT) ma 2 duong thang DM; BH phan biet
=> DM // BH (dl)
=> goc MDB + DBH = 180o (tcp)
co tamgiac ADB vuong can tai A do goc A = 90o (gt) va AD = AB (gt)
=> goc MDA + goc ABH = 90o
ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)
=> goc MAD = goc ABH
xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)
=> tamgiac AMD = tamgiac BHA (ch - gn)
![](https://rs.olm.vn/images/avt/0.png?1311)
A/ Theo giả thiết ta có:DA=BA;AE=AC\(\Rightarrow\) DC=BE
Vì tam giác BDA là tam giác vuông cân\(\Rightarrow\)góc A=90 độ\(\Rightarrow\) DC vuông góc vs BE
B/ Áp dụng định lý Pi-ta-go cho tam giác BAD vuông tại A:BD2=BA2+AD2
ACE vuông tại A:CE2=AC2+AE2
ADE vuông tại A:DE2=DA2+AE2
BAC vuông tại A:BC2=AB2+AC2
Từ trên suy ra:BD2+CE2=BC2+DE2
C/Xét tam giác BAC và DAE:DA=BA
BA=AE
GÓC BAC=GÓC DAE=90
\(\Rightarrow\) Tam giác BAC=DAE(c-g-c)
\(\rightarrow\) BC=DE(2 cạnh t/ứ)
\(\rightarrow\) góc CBA=góc AED(t/ứ)
mà 2 góc nàm vị trí so le trong\(\Rightarrow\)BC song song DE
\(\rightarrow\) góc BCE+góc CED=180 ĐỘ(2 góc phía trong cùng phía)
mà góc DCE=góc BEC(TAM GIÁC cae VUÔNG CÂN)
\(\Rightarrow\) Góc BCD=góc BED
MÀ góc BCD=CDE(so le trong)
\(\Rightarrow\) góc ADE=góc AED\(\Rightarrow\) TAM GIÁC ADE vuông cân tai E
mà ta có AI(IK cắt DE ở I)LÀ đường trung trực của tam giác
\(\rightarrow\) AI cx là đg trung tuyến của ADE
\(\Rightarrow\) I là trung điểm của DE
MÀ ta lại có BC=DE(cm phần trên rồi)
\(\Rightarrow\) k là trung điểm của BC
(ko bít vẽ hình)
![](https://rs.olm.vn/images/avt/0.png?1311)
B A C D E
a) ta có EAB=\(90^0+BAC\)
DAC=\(90^0+BAC\)
=> EAB=DAC
XÉT \(\Delta EAB\)VÀ \(\Delta CAD\)
AE=AC
AD=AB
EAB=DAC
\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)
\(\Rightarrow BE=DC\)(CẠNH TƯƠNG ỨNG)