Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tên các điểm bn tự đặt nha
a) ta có CK // HB ( do cùng vuông góc với AC)
CH// BK (do cùng vuông góc với AB)
tứ giác BKCH có CK // HB ,CH// BK => BKCH là hbh
b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)
A+K = 90
K= 30
c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK
d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM
tam giác AKH có AH//OM, KM=MH =>AO=OK (1)
từ O kẻ OS sao cho SA=SB
tam giác AKB có SA=SB, AO=OK => OS//BK
lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC
=> OA=OB=OC(2)
từ 1 và 2 => OA=OB=OC=OK
a: Xét tứ giác AHDK có
\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)
=>AHDK là hình chữ nhật
Hình chữ nhật AHDK có AD là phân giác của góc HAK
nên AHDK là hình vuông
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là đường cao
nên AH là trung trực của BC
c: Xét tứ giác ABIC có
H là trung điểm chung của AI và BC
AI vuông góc bC
=>ABIC là hình thoi
=>IC//AB và IC=AB
=>CA=CI
=>góc CAH=góc CIH
A) Tứ giác AMIN là hình chữ nhật. Vì i là trung điểm của BC, nên AM = AN (do đường cao cắt đường trung bình tại trung điểm). Vì iM vuông góc với AB và iN vuông góc với AC, nên AMIN là hình chữ nhật.
B) Lấy D sao cho N là trung điểm của Di. Ta cần chứng minh ADCi là hình thoi.
Vì N là trung điểm của Di, nên DN = Ni. Vì i là trung điểm của BC, nên BN = NC.
Ta có AN = AM (vì AMIN là hình chữ nhật).
Vì AB < AC, nên AM < AN. Khi đó, DN < Ni.
Vì DN = Ni và DN < Ni, nên DNi là đường cao của tam giác ADCi.
Vì DNi là đường cao và AN = AM, nên ADCi là hình thoi.
C) Đường thẳng BN cắt DC tại K. Ta cần chứng minh DK/DC = 1/3.
Vì BN là đường cao của tam giác ADC, nên DK/DC = BK/BC.
Vì BN cắt DC tại K, nên DK + KC = DC.
Vì N là trung điểm của BC, nên BK = KC.
Khi đó, DK/DC = BK/BC = BK/(BK + KC) = BK/(BK + DK) = 1/3 (vì BK = DK).
Vậy, DK/DC = 1/3.
a: Sửa đề: Cho tam giác ABC vuông tại A
Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)
=>AMIN là hình chữ nhật
b: Xét ΔABC có
I là trung điểm của bC
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác AICD có
N là trung điểm chung của AC và ID
=>AICD là hình bình hành
Hình bình hành AICD có AC\(\perp\)ID
nên AICD là hình thoi
a: Xét tứ giác AKMH có
\(\widehat{AKM}=\widehat{AHM}=\widehat{KAH}=90^0\)
Do đó: AKMH là hình chữ nhật
b: Xét tứ giác BMKH có
MK//BH
MK=BH
Do đó: BMKH là hình bình hành
Suy ra: BK và MH cắt nhau tại trung điểm của mỗi đường
mà E là trung điểm của MH
nên E là trung điểm của BK
=>B,E,K thẳng hàng