K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAD và ΔBMD có 

BA=BM(gt)

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

BD chung

Do đó: ΔBAD=ΔBMD(c-g-c)

29 tháng 3 2022

Ta có BA=BM (gt)

         ^B=60 độ 

=>ΔABM  là Δ đều

29 tháng 3 2022

xét ΔBAD và ΔBMD 

có AB=BM

   ^ABD=^MBD

  BD chnsg 

suy  ra ΔBAD =ΔBMD 

a: góc C=180-80-60=40 độ

góc A>góc B>góc C

=>BC>AC>AB

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

c: Xét ΔDMC và ΔDAH có

góc DMC=góc DAH

DM=DA

góc MDC=góc ADH

=>ΔDMC=ΔDAH

=>DC=DH

2 tháng 4 2017

d)

Xét tam giác AMB có ABM<AMB(60 độ < 80 độ)

=>AM<AB (1)

Xét tam giác DAB có ADB<DAB( 70 độ<80 đô)

=> AB<BD (2)

Từ (1) và (2)

=> AM<BD ( đpcm)

Còn vẽ hình bạn tự vẽ nha, cũng không khó lắm đâu, vẽ trên máy tính thì khó thôi)

2 tháng 4 2017

a) C=180-80-60=40( độ)

Tam giác ABC có C<B<A

=> AB<AC<BC

b) Xét tam giác BAD và tam giác BMD có

BA=BM( giả thiết)

DBA=DBM ( vì tia BD là phân giác của góc ABC)

Cạnh BD cung

=> \(\Delta BAD=\Delta BMD\left(c.g.c\right)\)

c) Có \(\Delta BAD=\Delta BMD\)( theo câu b)

=>DA=DM ( 2 cạnh tương ứng)

  Góc DAB= gócDMB ( 2 góc tương ứng) ( Xin OLM cho bổ sung vào hệ thống kí hiệu góc để viết cho tiện)

=> Góc DMC= góc DAH ( 2 góc kề bù của 2 góc bằng nhau)

Xét tam giác DAH và tam giác DMC có

góc CDM= góc HAD ( 2 góc đối đỉnh)

DA=DM

DAH=DMC

=>\(\Delta DAH=\Delta DMC\left(g.c.g\right)\)

=> DH=DC ( 2 cạnh tương ứng)

=> tam giác DHC cân tại D

Vì BD là phân giác của góc ABC nên góc DBA=góc DBM=60:2=30 độ

Có ADB=180-80-30=70 độ

MDB=180-80-30=70 độ ( vì góc DMB= góc DAB= 80 độ)

=> góc MDA=MDB+ADB=70+70=140 độ

Ta có CDH=MDA=140 độ ( 2 góc đối đỉnh)

=> DHC = \(\frac{180-140}{2}=20\) độ

a: \(\widehat{C}=180^0-60^0-80^0=40^0\)

Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

b: Xét ΔABD và ΔMBD có 

BA=BM

\(\widehat{ABD}=\widehat{MBD}\)

BD chung

Do đó:ΔABD=ΔMBD

c: Xét ΔADH và ΔMDC có 

\(\widehat{DAH}=\widehat{DMC}\)

AD=MD

\(\widehat{ADH}=\widehat{MDC}\)

DO đó:ΔADH=ΔMDC

Suy ra: DH=DC

hay ΔDCH cân tại D

a: góc C=180-80-60=40 độ

góc A>góc B>góc C

=>BC>AC>AB

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

c: Xét ΔDAH và ΔDMC có

góc DAH=góc DMC

DA=DM

góc ADH=góc MDC

=>ΔDAH=ΔDMC

=>DH=DC

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)