K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=15cm

Xét ΔABC có AC<AB<BC

nên \(\widehat{B}< \widehat{C}< \widehat{A}\)

b: Xét ΔEAD có 

EC là đường cao

EC là đường trung tuyến

DO đó: ΔEAD cân tại E

c: Xét ΔDAB có 

C là trung điểm của AD

CE//AB

Do đó: E là trung điểm của BD

\(\text{#TNam}\)

`a,` Ta có: \(\widehat{A}=90^0, \widehat{B}=50^0\)

Theo đlí tổng `3` góc trong `1` tam giác ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

`->`\(90^0+50^0+\widehat{C}=180^0\)

`->`\(\widehat{C}=180^0-90^0-50^0=40^0\)

`->`\(\widehat{A}>\widehat{B}>\widehat{C}\)

`-> BC>AC>AB`

`b,` Xét Tam giác `ABD` và Tam giác `HBD` có:

`\text {BD chung}`

\(\widehat{ABD}=\widehat{HBD}\) `(\text {tia phân giác}`\(\widehat{BAC})\)

`=> \text {Tam giác ABD = Tam giác HBD (ch-gn)}`

`-> AD = HD (\text {2 cạnh tương ứng})`

`c,` Xét Tam giác `HDC:`\(\widehat{H}=90^0\)

`-> \text {DC là cạnh lớn nhất}`

`-> DC>HD`

Mà `DA=DH (b)`

`-> DC>DA (đpcm)`

loading...

5 tháng 8 2019

a) Ta có BC^2= 15^2=225cm
              AC^2=12^2=144cm
              AB^2=9^2=81cm
lại có AB^2+AC^2=144+81=155=BC^2
ví AB^2+AC^2=BC^2
nên tam giác ABC vuông tại A( đpcm)
trong tam giác ABC có BC>AC>AB( 15cm>12cm>9cm)
                      suy ra        A>B>C( định lí quan hệ giữa góc và cạnh đối diện trong một tam giác)
b)Ta có AC vuông góc với BD(gt)
nên AC là đường cao của tam giác BCD
lại có AB=AD(gt)
nên AC là  đường trung tuyến của tam giác BCD
do đó tam giác BCD cân tại C( đpcm)
c)Ta có AC là trung tuyến của tam giác DBC(cmt)
lại có K là trung điểm của BC(gt)
nên CK là trung tuyến của tam giác BCD
mà CK và AC cắt nhau tại M
do đó M là trọng tâm của tam giác BCD
suy ra CM=2/3AC=2/3*12=8(cm)
vậy CM=8cm( đpcm)
d) Ta có N là trực tâm cả tam giác BDC(gt)
nên BN vuông góc với CD(gt)
mà NI vuong góc với CD(gt)

5 tháng 8 2019

Nè bn @Lê Mai Phương bn nhầm bài à trong bài làm gì có ^2

16 tháng 12 2021

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Suy ra: DA=DE

16 tháng 12 2021

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> BH⊥AEBH⊥AE hay BD⊥AE(đpcm)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBF}\) chung

Do đó: ΔBEF=ΔBAC

Suy ra: BF=BC

26 tháng 5 2018

a/ \(\Delta ADE\)vuông và \(\Delta ADF\)vuông có:

\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))

Cạnh huyền AD chung

=> \(\Delta ADE\)vuông = \(\Delta ADF\)vuông (cạnh huyền - góc nhọn)

=> DE = DF (hai cạnh tương ứng) (đpcm)

b/ \(\Delta ABD\)và \(\Delta ACD\)có:

AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))

Cạnh AD chung

=> \(\Delta ABD\)\(\Delta ACD\)(c. g. c)

Ta có AB = AC (\(\Delta ABC\)cân tại A)

=> A thuộc đường trung trực của BC

=> AD \(\perp\)BC (đpcm)

c/ Ta có AD là đường phân giác của \(\Delta ABC\)

=> \(\widehat{DAB}=\frac{\widehat{BAC}}{2}=\frac{80^o}{2}=40^o\)(tính chất tia phân giác)

và \(\widehat{EDA}=90^o-\widehat{DAB}\)(\(\Delta ADB\)vuông tại D)

=> \(\widehat{EDA}=90^o-40^o=50^o\)

Ta lại có: \(\widehat{DAB}< \widehat{EDA}\)(vì 40o < 50o)

=> DE < AE (quan hệ giữa góc và cạnh đối diện trong tam giác)

và \(\hept{\begin{cases}DA< AE\\DA< DE\end{cases}}\)(quan hệ giữa đường vuông góc và đường xiên)

=> DA < DE < AE (đpcm)

26 tháng 5 2018

a)Xét tam giác EAD và FAD có

AÊD= góc AFD=90*

AD là cạnh chung

góc EAD=góc FAD(tam giác ABC cân)

=>tam giác ...=...(cạnh huyền-góc nhọn)

=>DE=DF

b)Xét tam giác ABD và ACD có

BA=CA(gt)

BÂD=CÂD(gt)

AD là cạnh chung

=>tam giác ...=...(c-g-c)

=>góc BDA=CDA

mà BDA+CDA=180*

=>BDA=CDA=180*/2=90*

=>AD vuông góc với BC

c) Xét tam giác AED có: AÊD+EÂD+ góc EDA=180*

=>90*+(80*/2)+góc EAD=180*

=>90*+40*+góc EAD=180*

=>góc EAD=180*-(90*+40*)

=>góc EAD=50*

ta có:EÂD<góc ADE<AÊD(40*<50*<90*)

=>ED<AE<AD

Vậy, ED<AE<AD.