Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKB và ΔAKC có
AB=AC
góc BAK=góc CAK
AK chung
=>ΔAKB=ΔAKC
ΔABC cân tại A
mà AK là phân giác
nên AK vuông góc CB
b: Xét ΔACB có
BM,AK là trung tuyến
BM cắt AK tại G
=>G là trọng tâm
c: BK=CK=18/2=9cm
=>\(AK=\sqrt{30^2-9^2}=3\sqrt{91}\left(cm\right)\)
=>\(AG=2\sqrt{91}\left(cm\right)\)
a/ Xét tam giác ABM và tam giác EBM:
+ ^A = ^AEB ( = 90o)
+ BM chung
+ ^ABM = ^EBM ( do BM là phân giác ^B)
=> Tam giác ABM = Tam giác EBM (ch - gn)
b/ Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)
Mà ^C = 30o (gt)
=> ^B = 60o
Tam giác ABM = Tam giác EBM (cmt)
=> AB = EB (cặp cạnh tương ứng)
=> Tam giác ABE cân tại B
Lại có: ^B = 60o (cmt)
=> Tam giác ABE đều
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBAE có BA=BE và góc ABE=60 độ
nên ΔBAE đều
c: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
b: Xét ΔADI vuông tại A và ΔKDC vuông tại K có
DA=DK
\(\widehat{ADI}=\widehat{KDC}\)
Do đó: ΔADI=ΔKDC
Suy ra: AI=KC
c: Ta có: BA+AI=BI
BK+KC=BC
mà BA=BK
và AI=KC
nên BI=BC
=>ΔBIC cân tại B
mà \(\widehat{IBC}=60^0\)
nên ΔBIC đều
hình bạn tự vẽ nha
a) theo định lí pi-ta-go ta có
AB^2 + AC^2 = BC^2
Hay: 5^2 + AC^2 = 13^2
=) AC^2 = 13^2 - 5^2 = 169 - 25 = 144
=) AC = 12cm
b) Xét tam giác BAM và tam giác BEM có
góc ABM = góc EBM
BM là cạnh chung
góc BAM = góc BEM = 90 độ
=) tam giác BAM = tam giác BEM ( g - c - g )
=) BA = BE ( cạnh tương ứng )
=) tam giác ABE là tam giác cân
câu c, d mình đang nghĩ