Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có AD//CM => ^CAD=^ACM (góc so le trong)
Mà ^BAD=^CAD = ^A/2=120/2=60
=> ^ACM=60
+ Ta có ^CAM=180-^A=180-120=60
=> Trong tam giác ACM có ^AMC=180-(^ACM+^CAM)=180-(60+60)=60
Ta có góc BAD=góc DAC=120:2=60 độ mà dd' // với AD=>dCd'=60 độ
=>góc dCd'=góc ACM=60 độ
Ta có: góc BAC +góc CAM =180 độ
=>góc CAM=60 độ
Ta có: góc CAM+góc ACM+góc AMC=180 độ
=>góc AMC=60 độ
Ta có:
góc AEC = góc BAD ( 2 góc đồng vị và AD // EC)
góc ACE = góc DAC ( 2 góc so le trong và AD // EC)
góc BAD = góc DAC ( AD là tia phân giác của góc BAC)
=> góc AEC = góc ACE
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé