Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác ABD ta có AC là đường phân giác ngoài. theo tính chất đường phân giác ta có: CD/CB=AD/AB=30/40=3/4. Do dó DB/DC=1/3.
Xét Tam giác ABC có AD phân giác: ta có AB/AC=DB/DC=1/3. suy ra AC = 120
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=50cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)
=>\(BD=3\cdot\dfrac{50}{7}=\dfrac{150}{7}\left(cm\right);CD=4\cdot\dfrac{50}{7}=\dfrac{200}{7}\left(cm\right)\)
b: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
Hình chữ nhật AMDN có AD là phân giác của góc MAN
nên AMDN là hình vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{B}chung.\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b.\) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
\(AH.BC=AB.AC\) (Hệ thức lượng).
\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
BC=căn 30^2+40^2=50cm
AE=30*40/50=24cm
c: góc ADF=90 độ-góc ABD
góc AFD=góc BFE=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADF=góc AFD
=>AD=AF
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔCBA có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=50
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)
=>\(BD=\dfrac{150}{7}\left(cm\right);CD=\dfrac{200}{7}\left(cm\right)\)
Xét ΔABC có DE//AB
nên \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{DE}{30}=\dfrac{200}{7}:50=\dfrac{4}{7}\)
=>\(DE=\dfrac{120}{7}\left(cm\right)\)
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
=>Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot30\cdot40=15\cdot40=600\left(cm^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn có thể tham khảo ở đây :
https://olm.vn/hoi-dap/detail/84849419273.html
_Hok tốt_
Qua D kẻ DE // AB ( E ∈ AB )
Vì AD là phân giác góc A của ΔABC:
=>\(\frac{Dc}{DB}=\frac{AC}{Ab}\)
⇒ \(\frac{DC}{DB+DC}=\frac{Ac}{Ac+AB}\) hay \(\frac{DC}{DB}=\frac{24}{12+24}< =>\frac{DC}{BC}=\frac{2}{3}\left(1\right)\)
Ta có : AB là phân giác góc A
⇒ Góc A1 = góc A2 = 60 độ ( SLT)
Mà góc A1 = góc D1 =60 ( so le trong , DE // AB )
⇒ góc A2= D1= 60 ⇒ ΔADEđều
⇒AD = DE Vì DE // AB ( cách dựng )
Xét ΔABCtheo hệ quả định lý Ta-lét ta có:
AB DE = BC DC (2) Thế (1) vào (2) ta được : AB/ DE = 2/3hay 3 DE =2/3
⇒DE 2.3/3 = 2 cm
⇒AD = 2 cm ( AD=DE chứng minh trên )
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)
b)
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$
$\Rightarrow AD=15$ (cm)
$DC=AC-AD=40-15=25$ (cm)