Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha!
Xét tam giác ABC có : \(\widehat{A}\)\(=180\)\(-(\widehat{B}\)\(+\widehat{C}\)\()\)
Xét tam giác BOC có : \(\widehat{OBC}\)\(+\widehat{OCB}\)\(=180-\widehat{BOC}\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)=\(180-130\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)
Vì OC là tia phân giác của \(\widehat{C}\)\(\Rightarrow\widehat{OCB}\)\(=\widehat{OCA}\)\(=\frac{1}{2}\)\(\widehat{C}\)
Vì OB là tia phân giác của \(\widehat{B}\)\(\Rightarrow\widehat{OBC}\)\(=\widehat{OBA}\)\(=\frac{1}{2}\)\(\widehat{B}\)
\(\Rightarrow\frac{1}{2}\)\((\widehat{B}\)\(+\widehat{C}\)\()\)\(=\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)\(\Rightarrow\widehat{B}\)\(+\widehat{C}\)\(=50.2=100\)\(\Rightarrow\widehat{A}\)\(=180-100\)\(=80\)
Mình không viết độ được mong bạn thông cảm!
Chúc bạn học tốt!
a)Trong tam giác OBC có góc BOC + góc OBC + góc OCB = 180 độ
=> góc OBC + góc OCB = 180 độ - góc BOC = 50 độ
mà góc OBC + góc OCB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2
nên (góc ABC + ACB)/2 = 50 độ
=> góc ABC + ACB = 100 độ
Trong tam giác ABC có góc BAC + góc ABC + góc ACB = 180 độ
=> góc BAC = 180 độ - (góc ABC + góc ACB) = 180 độ - 100 độ = 80 độ
b) không biết làm
c) Để OP là phân giác góc BOC thì tam giác BOC cân tại O => tam giác ABC cân tại A
Xét tam giác BOC có:
B1 + C1+ 135o = 180o
B1 +C1 = 45o
Ta có:
B= B1+ B2
C= C1+ C2
Và B +C +A = 180o
(B1+ B2)+ (C1+ C2) +A = 180o
2*B1 + 2*C1 +A = 180o
2* (B1+ C1) +A= 180o
2* 45o +A= 180o
90o +A= 180o
A= 90o
Ta có: B= 2C
và B +C +A = 180o
2C +C +90o =180o
3C = 90o
C = 30o
=> B= 2C = 2 * 30o= 60o
Mà tam giác ABC = tam giác DEF
=> A=D= 90o
E= B= 60o
C= F= 30o
a, Trong tg ABC, có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(62^{0^{ }}+\)\(\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=118^0\)
Vì BO và CO là tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)nên \(\widehat{OBC}+\widehat{OCB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{118^0}{2}=59^0\)
Trong tg BOC có \(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^0\)
\(59^0+\widehat{BOC}=180^0\)
\(\widehat{BOC}=121^0\)
\(\)\(MIK\)\(NHAAAA!\)