K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra: IA=ID

mà ID<IC

nên IA<IC

b: Xét ΔBIM có \(\widehat{BIM}>90^0\)

nên BM>BI

25 tháng 8 2018

câu a bài 2 nhá

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ

a: Xét ΔABC vuông tại A có AH là đường cao

nên CA^2=CH*CB

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(AD=\dfrac{2\cdot15\cdot20}{15+20}\cdot cos45=\dfrac{60}{7}\sqrt{2}\)(cm)

AH=15*20/25=12(cm)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{12}{7}\left(cm\right)\)

c: ΔABI vuông tại A có AK là đường cao

nên BK*BI=BA^2=BH*BC

=>BK/BC=BH/BI

=>ΔBKH đồng dạng với ΔBCI

11 tháng 7 2019

Bạn tự vẽ hình nha. 

a) Có BD//ME hay ID//ME

Xét ΔAME, có :

I là trung điểm của AM (gt), ID//ME (cmt)

=> D là trung điểm của AE

Hay AD=ED.                           (1)

Xét ΔDBC, có :

M là trung điểm của BC(gt), BD//ME(gt)

=> E là trung điểm của DC

Hay DE=CE                           (2)

Từ (1) và (2) => AD=ED=CE.    ( đpcm) 

b)

Xét ΔBDC, có

BM=CM(cm câu a), DE=CE(cm câu a) 

=>ME là đường trung bình của ΔBDC

=>ME= 1/2 BD.     (*)

Xét ΔAME, có:

AI=IM (cm câu a), AD=DE(cm câu a) 

=> ID là đường trung bình của ΔAME 

=> ID= 1/2 ME (**)

Từ (*) và (**) => ID= 1/2ME, mà ME=1/2BD

=> ID=1/2 . 1/2 BD

=> ID = 1/4 BD  (đpcm) 

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
2 tháng 8 2017

ta có AM là trung tuyến => M là trung điểm BC

=> MC/BC = 1/2

từ M vẽ MH//BD (H thuộc AC)

xét tam giác AMH có MH//ID (MH//BD)

=>  ID/MH = AI/AM  (hệ quả thales) 

vì I là trung điểm AM nên ID/MH = AI/AM =1/2 (1)

xét tam giác BDC có MH//BD 

=> MH/BD = MC/BC = 1/2 (hệ quả thales)  (2)

từ (1) và (2) => \(\frac{ID}{MH}.\left(\frac{MH}{BD}\right)=\frac{1}{4}\)(3)

DỄ CHỨNG MINH: AD=DH=HC (chứng minh D là tđ AH, H là tđ DC)

=> AD=1/3.AC=4cm (bn tính AC bằng pitago trong tam giác ABC)

xét tam giác ABD vuông tại A có

BD^2=AB^2+AD^2

=> BD= \(\sqrt{41}\)cm

thế vào (3) tính được ID => tính đc BI (cộng đoạn thẳng)