K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: AC=7,5

a: Sửa đề: ΔABC đồng dạng với ΔCBD
Xét ΔABC và ΔCBD có

BA/BC=CB/BD

góc B chung

=>ΔABC đồng dạng với ΔCBD

b: ΔABC đồng dạng với ΔCBD
=>AC/CD=AB/CB

=>7,5/CD=6/9=2/3

=>CD=11,25(cm)

 

7 tháng 5 2017

a)   BD=45/7        CD=60/7       DE36/7

b)    ADB=162/7     BCD k có vì 3 điểm này thẳng hàng

7 tháng 5 2017

Thanks.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

10 tháng 12 2023

a: Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{14}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{7}\)

mà AD+CD=AC=9cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{9}{13}\)

=>\(AD=\dfrac{9}{13}\cdot6=\dfrac{54}{13}\left(cm\right);CD=\dfrac{9}{13}\cdot7=\dfrac{63}{13}\left(cm\right)\)

b: Sửa đề: b) Tính tỉ số diện tích của tam giác ABD và tam giác BDC

Vì \(\dfrac{AD}{6}=\dfrac{CD}{7}\)

nên \(\dfrac{AD}{CD}=\dfrac{6}{7}\)

=>\(\dfrac{S_{ABD}}{S_{CBD}}=\dfrac{6}{7}\)

=>\(S_{ABD}=\dfrac{6}{7}\cdot S_{CBD}\)

a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)

ADlà phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có

góc HAB=góc ECD

=>ΔABH đồng dạng với ΔCDE

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Lời giải:
a. $AB=AC=14$ cm nên $ABC$ là tam giác cân tại $A$
Do đó đường phân giác $AD$ đồng thời là đường trung tuyến 

$\Rightarrow BD=DC=\frac{BC}{2}=6$ (cm) 

b. 

$\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=1$ 

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Hình vẽ:

6 tháng 5 2016

cau b)

ta có tgiac abc vuông tại a(gthiet)

theo định lí pi ta go ta có:

BC^2=AC^2+AB^2=81+144=225

suy ra BC=15

*BD=?

ta có AD la p/giac (giả thiết)

suy ra BD/DC=AB/AC (tính chất đương phân giác)

suy ra BD/BD+DC=9/9+12=3/7

suy ra BD/BC=3/7

suy ra BD=15.3/7=45/7

DC=BC-BD=15-45/7=60/7

*Câu c)............

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm