Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của phân giác góc B và C
Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC
Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)
=>góc ADC= góc DAH + góc HAC = góc DAC
=> tam giác CAD cân tại C => CA=CD
tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)
CM tương tự, ta có IA = IE (2)
Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE
=> đpcm
a: Xét ΔADE có
AB/BD=AC/CE
nên DE//BC
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)
Do đó: ΔDBM=ΔECN
Suy ra: BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đó: ΔABM=ΔACN
Suy ra: AM=AN
hay ΔAMN cân tại A
A B C E K
a) Xét \(\Delta AKB\) và \(\Delta AKC\) , có :
AK là cạnh chung
AB = AC ( gt )
BK = KC ( K là trung điểm của BC )
=> \(\Delta AKB=\Delta AKC\left(cgc\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà góc AKB + AKC = 1800 ( 2 góc kề bù )
=> AKB = AKC= \(\frac{180^0}{2}\)= 900
Vậy AK \(\perp BC\)
b)
Ta có :
AK \(\perp BC\) ( Theo câu a )
EC \(\perp BC\) ( gt )
=> EC // AK
c) Tam giác BCE là tam giác vuông
GÓC BEC = 500
A B C M N E
Xét \(\Delta ABC\) có:
Góc BAC + góc ABC + góc ACB = 180o (Tổng 3 góc trong tam giác)
\(\Rightarrow120^o\) + góc ABC + góc ACB =180o
\(\Rightarrow\) Góc ABC + góc ACB = \(180^o-120^o=60^o\)
\(\Rightarrow\frac{1}{2}\)góc ABC + \(\frac{1}{2}\)góc ACB = \(\frac{60^o}{2}=30^o\)
\(\Rightarrow\)Góc EBC + góc ECB = 30o
Xét \(\Delta BEC\) có:
Góc BEC + góc EBC + góc DCB =180o (tổng 3 góc trong tam giác)
\(\Rightarrow BÊC+30^o=180^o\)
\(\Rightarrow BÊC=180^o-30^o=150^o\)
Vậy \(BÊC=150^o\)
Góc BEC = 30 độ