Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/minh
1, xét tam giác AID và tam giác BIC, có: ID=CI (bài cho)
góc AID= góc BIC
AI=BI ( vì BI là trung tuyến)
=> tam giác AID = tam gics BIC
=> AD=BC (ĐPCM)
=> Góc D = góc BCI; AD=BC
2,
Có AD=BC (cma)
và AE=BF ( bài cho)
=>DE=CF (Hiệu hai ...)
xét Tam giác DIE và tam giác CIF, có:
DE=CF (cmt)
góc D =góc BCI (cmt)
ID=CI
=> tam gics DIE= tam giác CIF
=>EI = FI
mà I năm giữa E và F
=> I là trung điểm EF (ĐPCM)
chắc đúng r đó k cho mik nha bạn
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hbh
=>AE=BD
b: Xét ΔABC có góc ACB<góc ABC
nên AB<AC
Xét ΔABC có
AB<AC
BD,CD lần lượt là hình chiếu của AB,AC trên BC
=>BD<CD
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hbh
=>AF//DC
=>AF//BC
mà AE//BC
nên F,A,E thẳng hàng
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hìnhbình hành
=>AE=BD
b: góc ACB<góc ABC
=>AB<AC
=>DB<DC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
=>F,A,E thẳng hàng
gọi giao của BK và CI là T
ta có : Ab=AC=>tam giác ABC cân tại A
=> góc ABC= góc ACB
ABD=180o-ABC
ACE=180o-ACB
=> góc ABD= góc ACE
xét tam giác ABD và tam giác ACE có:
BD=CE(gt)
góc ABD=góc ACE
AB=AC(gt)
=> tam giác ABD=tam giác ACE(c.g.c)
=> AK=AE=> tam giác AKE cân tại A
MB=MC
BD=CE
MD=MB+BD
ME=MC+CE
=> MD=ME
tam giác AKE cân tại A có AM là đường trung tuyến=> AM đồng thời là phân giác góc KAE(1)
xét 2 tam giác vuông KBD và ICE có:
góc D= góc E(tam giác AKE cân tại A)
DB=EC(gt)
=>tam giác KBD=tam giác ICE(CH-GN)
=>KD=IE
AD=AE
AK=AD-DK
AI=AE-IE
=> AK=AI
xét 2 tam giác vuông AKB và tam giác AIC có:
AK=AI(cmt)
AB=AC(gt)
=>tam giác AKB=tam giác AIC(CH-CGV)
=> AT là tia phân giác góc KAE(2)
từ (1)(2)=> AI trùng AM=> A,M,T thẳng hàng
=> AM,BK,CT đồng quy tại T