K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Đáp án B

Áp dụng định lý hàm số sin, ta có  B C sin B A C ^ = A C sin A B C ^ = A B sin A C B ^ = 2 R

  ⇔ B C sin 75 0 = A C sin 45 0 = A B sin 60 0 = 2 R ⇔ A B = 2 R . sin 60 0 = R 3 B C = 2 R . sin 75 0 = 6 + 2 2 R A C = 2 R . sin 45 0 = R 2

Lại có

S Δ A B C = 1 2 A B . A C . s i n B A C ^ = 1 2 B H . A C ⇔ B H = A B . s i n B A C ^ = R 3 . sin 75 0

  ⇔ B H = 3 6 + 2 4 R .

Khi quay Δ A B C  quanh AC thì Δ B H C  tạo thành hình nón tròn xoay (N) có đường sinh l = B C = 6 + 2 2 R , bán kính đáy r = B H = 3 6 + 2 4 R .

Diện tích xung quanh hình nón  (N) là

S x q = π r l = π 3 6 + 2 4 R . 6 + 2 4 R = 3 + 2 3 2 π R 2

 (đvdt).

 

5 tháng 4 2019

Đáp án B

Ta có  V = π ∫ 0 π − sin x 2 d x = π ∫ 0 π sin 2 x d x

25 tháng 9 2019

Đáp án A.

2 tháng 6 2017

Chọn đáp án D.

21 tháng 3 2019

Gọi I là trung điểm của AB thì

Suy ra góc giữa O ' A B  và (O,R) là góc giữa O ' I  và OI hay O ' I O = 60 °

 

 

Tam giác vuông OIA có

 

Tam giác O ' AB  đều cạnh 

 

Tam giác O ' O I  vuông tại O nên 

 

Suy ra

 

Chọn D.

30 tháng 4 2019

 

Đáp án A

Khi quay hình tròn C quay trục OA ta được khối cầu có thể tích  V = 4 3 π R 3 = 36 π

Khối tròn xoay  H 1  chưa điểm A chính là chỏm cầu có chiều cao  x 2 + 4

Suy ra thể tích khối H 1 là  V 1 = π h 2 R − h 3 = π . A H 2 . 3 − A H 3

Mà V = V 1 + V 2  và 

V 2 = 2 V 1 ⇒ V 1 V = 1 3 = A H 2 . 3 − A H 3 36 = 1 3 ⇔ A H 3 − 9 A H 2 + 36 = 0      *

Vì 0 < A H < O A = 3  nên giải  * → c a s i o A H ≈ 2 , 32

 

11 tháng 12 2018

Chọn đáp án B.

29 tháng 11 2018

30 tháng 7 2018

Đáp án B.

Đặt a = B C , b = C A , c = A B .

Quay tam giác OCA quanh trung trực của đoạn thẳng CA thì khối tròn xoay sinh ra là khối nón có chiều cao h 1 = R 2 − 1 4 b 2  và bán kính đáy r 1 = 1 2 b  nên ta có V 1 = 1 3 π r 1 2 h 1 = 1 24 π b 2 4 R 2 − b 2 .

Tương tự, ta có

V 2 = 1 24 π c 2 4 R 2 − c 2 ; V 3 = 1 24 π a 2 4 R 2 − a 2 .

Bằng việc khảo sát hàm số f t = t 2 4 R 2 − t  trên khoảng 0 ; 4 R 2 hoặc dựa vào bất đẳng thức Cô-si

1 2 b 2 . 1 2 b 2 . 4 R 2 − b 2 ≤ 1 2 b 2 + 1 2 b 2 + 4 R 2 − b 2 3 3 = 64 27 R 6 .

 

Ta được V 1 ≤ 2 π 3 9 R 3 ; V 2 ≤ 2 π 3 9 R 3 . Suy ra V 1 + V 2 ≤ 4 π 3 9 R 3 .

Dấu bằng xảy ra khi và chỉ khi b = c = 2 6 3 R .

Vậy V 1 + V 2  đạt giá trị lớn nhất bằng 4 π 3 9 R 3  khi b = c = 2 6 3 R .

Khi đó tam giác ABC cân tại A và có A B = A C = 2 6 3 R .

Gọi AH là đường cao của tam giác ABC thì 2 R . A H = A B 2 . Từ đó suy ra A H = A B 2 2 R = 4 3 R . Do đó O H = A H − R = 1 3 R  và a = 2 R 2 − O H 2 = 4 2 3 R .

Suy ra V 3 = 8 π 81 R 3 .