Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A, có đường cao AH:
\(AH^2=BH.HC\\ \Leftrightarrow AH^2=9.16\\ \Leftrightarrow AH^2=144\\ \Leftrightarrow AH=12cm\)
Có AM là đường trung tuyến
\(\Rightarrow BM=MC=\dfrac{1}{2}BC=\dfrac{9+16}{2}=12,5cm\\ \Rightarrow HM=BM-BH=12,5-9=3,5cm\\ \Rightarrow\tan HAM=\dfrac{HM}{AH}=\dfrac{3,5}{12}\)
A B C H M
Ta có \(BC=BH+HC=9+16=25\)
Vì \(\Delta ABC\)vuông tại A có AM là trung tuyến \(\Rightarrow AM=MB=MC=\frac{BC}{2}=\frac{25}{2}\)
Ta có \(HM=MB-BH=\frac{25}{2}-9=\frac{7}{2}\)
\(sin\widehat{HAM}=\frac{HM}{MA}=\frac{7}{2}:\frac{25}{2}=\frac{7}{25}\)
\(cos\widehat{HAM}=\frac{AH}{AM}=12:\frac{25}{2}=\frac{24}{25}\)
\(tan\widehat{HAM}=\frac{HM}{HA}=\frac{7}{2}:12=\frac{7}{24}\)
\(cot\widehat{HAM}=\frac{HA}{HM}=\frac{24}{7}\)
A C B D O M K H
a;b dễ chắc tự làm đc
c, lấy K sao cho M là trđ của OK
mà có M là trđ của AC (gt)
=> COAK là hình bình hành (dh)
=> CK // OA hay CK // OH và AK // CO hay AK // OD
xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\) (talet)
xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)
=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)
=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)
mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)
=> AC^2 = HB*AC
=> AC = HB (chia 2 vế cho ac vì ac > 0)
Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)
Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)
CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)
Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)
Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)
Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm
AH = tan\(\widehat{ACH}\)x HM = tan 150 x 2 = \(4-2\sqrt{3}\)cm
Sin \(\widehat{AMH}\)= \(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\) = \(2-\sqrt{3}\) cm
Định lí Pitago : AM2 = AH2 + HM2
HC = tan \(\widehat{ACH}\)x AH