K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1

M là trung điểm BC \(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(\overrightarrow{IM}=2\overrightarrow{AI}\Rightarrow\overrightarrow{IA}+\overrightarrow{AM}=2\overrightarrow{AI}\)

\(\Rightarrow-\overrightarrow{AI}+\overrightarrow{AM}=2\overrightarrow{AI}\)

\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)

\(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AI}=-\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}=-\dfrac{5}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)

Đặt \(\overrightarrow{AK}=x.\overrightarrow{AC}\)

\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+x.\overrightarrow{AC}\)

Do B, I, K thẳng hàng \(\Rightarrow\overrightarrow{BK}\) và \(BI\) cùng phương

\(\Rightarrow\dfrac{-1}{\left(-\dfrac{5}{6}\right)}=\dfrac{x}{\left(\dfrac{1}{6}\right)}\Rightarrow x=\dfrac{1}{5}\)

\(\Rightarrow\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AC}=\dfrac{1}{5}\left(\overrightarrow{AK}+\overrightarrow{KC}\right)=\dfrac{1}{5}\overrightarrow{AK}+\dfrac{1}{5}\overrightarrow{KC}\)

\(\Rightarrow\dfrac{4}{5}\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{KC}\)

\(\Rightarrow4.\overrightarrow{AK}=1.\overrightarrow{KC}\Rightarrow4.\overrightarrow{KA}=1.\overrightarrow{CK}\)

\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=1\end{matrix}\right.\)

NV
18 tháng 1

Các kí hiệu em ghi như IM=2AI và nKA=mCK nó là đoạn thẳng hay có vecto?

29 tháng 12 2023

Xét ΔBAD có BM là đường trung tuyến

nên \(\overrightarrow{BM}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)\)

\(=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{AN}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

=>\(\overrightarrow{BM}=\dfrac{5}{6}\cdot\overrightarrow{BN}\)

=>B,M,N thẳng hàng

22 tháng 11 2017

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}\)(D là trung điểm của BC) (1)

\(\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AK}\)(K là trung điểm của MN) (2)

Lấy (1) trừ (2) có: \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=2\left(\overrightarrow{AD}-\overrightarrow{AK}\right)\)

\(\dfrac{\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\overrightarrow{AM}+\overrightarrow{AN}\right)}{2}\)=\(\overrightarrow{KD}\)

\(\dfrac{\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\right)}{2}\)=\(\overrightarrow{KD}\)

\(\dfrac{\overrightarrow{AB}+\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}}{2}\)=\(\overrightarrow{KD}\)

\(\dfrac{\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}}{2}\)=\(\overrightarrow{KD}\)

\(\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)=\(\overrightarrow{KD}\)

29 tháng 10 2021

a: \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AC}\)

\(=\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

10 tháng 8 2018

moi nguoi oi giup minh voi

9 tháng 4 2021

Ta có:

\(\vec{AN}=\vec{AM}+\vec{MN}\)

\(=\dfrac{2}{3}\vec{AC}+\dfrac{1}{4}\vec{MB}\)

\(=\dfrac{2}{3}\vec{AC}+\dfrac{1}{4}\left(\vec{AB}-\vec{AM}\right)\)

\(=\dfrac{1}{4}\vec{AB}+\dfrac{1}{2}\vec{AC}\)

\(\vec{AP}=\vec{AC}+\vec{CP}\)

\(=\vec{AC}+\dfrac{1}{k+1}\vec{CB}\)

\(=\vec{AC}+\dfrac{1}{k+1}\left(\vec{AB}-\vec{AC}\right)\)

\(=\dfrac{1}{k+1}\vec{AB}+\dfrac{k}{k+1}\vec{AC}\)

A, N, P thẳng hàng khi:

\(\dfrac{\dfrac{k}{k+1}}{\dfrac{1}{k+1}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{4}}\Leftrightarrow k=2\)

Kết luận: \(k=2\)

18 tháng 10 2019

\(\overrightarrow{KA}=-\overrightarrow{AK}=-\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=-\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)

\(=-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)

\(\overrightarrow{KD}=\overrightarrow{AD}-\overrightarrow{AK}=\overrightarrow{AD}+\overrightarrow{KA}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)

\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)