Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d\Delta MNP=d\Delta ABC=25cm;NP=BC=7cm\)
\(\Rightarrow AB+AC=25-7=18cm\)
\(\Rightarrow AB=\left(18+2\right):2=10cm;AC=\left(18-2\right):2=8cm\)
Vậy AB=10cm; AC=8cm; BC=7cm
Hình tự vẽ
Xét \(\Delta MBH\)và \(\Delta NCH\)
\(\widehat{BMH}=\widehat{CNH}=90^o\)
\(BH=CH\left(cma\right)\)
\(\widehat{NBH}=\widehat{NQH}\)(Tam giác ABC cân tại A
\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right)\)
\(MH=NH\left(2ctu\right)_{\left(1\right)}\)
Xét \(\Delta BQH\)và \(\Delta CNH\)
\(\widehat{Q}=\widehat{CNH}=90^o\)
\(BH=CH\left(cma\right)\)
\(\widehat{BHQ}=\widehat{NHC}\)(đối đỉnh)
\(\Rightarrow\Delta BQH=\Delta CNH\left(ch-gn\right)\)
\(\Rightarrow QH=NH\left(2ctu\right)_{\left(2\right)}\)
Từ \(\left(1\right),\left(2\right)\Rightarrow MH=QH\)
=> \(\Delta HQM\)cân tại H
A B C H I I
a) Xét \(\Delta\)AHB và \(\Delta\)AHC có:
AB=AC (\(\Delta\)ABC cân tại A)
BH=HC (H là trung điểm BC)
AH chung
=> △AHB=△AHC (c.c.c)
b) Xét △ABC có H là trung điểm BC
=> AH là đường trung tuyến của △ABC
mà △ABC cân tại A (gt) => AH trùng với đường cao
=> AH _|_ BC. Mà H là trung điểm BC
=> AH là đường trung trực của BC (đpcm)
b) Có H là trung điểm BC => \(BH=CH=\frac{BC}{2}\)mà BC=10cm
=> \(BH=CH=\frac{10}{2}=5cm\)
Có AH _|_ BC (cmt) => △ABH cân tại H
Áp dụng định lý Pytago vào △ABH vuông tại H, ta có:
AH2+BH2=AB2
=> AH2=AB2-BH2
Thay BH=5(cm); AB=13(cm)
=> AH2=132-52
=> AH2=144
=> AH=12(cm) (AH>0)