K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2023

loading... a) Do BM là đường trung tuyến của ∆ABC (gt)

⇒ M là trung điểm của AC

Do D và B đối xứng qua M (gt)

⇒ M là trung điểm của BD

Tứ giác ABCD có:

M là trung điểm của AC (cmt)

M là trung điểm của BD (cmt)

⇒ ABCD là hình bình hành

b) Do ABCD là hình bình hành (cmt)

⇒ AB // CD

Mà DH ⊥ AB

⇒ DH ⊥ AC

c) Do ABCD là hình bình hành

⇒ AB // CD

Mà BK ⊥ CD

⇒ BK ⊥ AB

⇒ ∠KBH = 90⁰

Tứ giác BHDK có:

∠BKD = ∠KBH = ∠BHD = 90⁰

⇒ BHDK là hình chữ nhật

Mà M là trung điểm BD

⇒ M là trung điểm của HK

⇒ M, H, K thẳng hàng

Do đó chứng minh MH ⊥ MK là sai. Em xem lại đề ở câu c nhé

a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)

nên AMIN là hình chữ nhật

b: IN=3cm

nên AM=3cm

IM=4cm

nên AN=4cm

Xét ΔABC có

I là trung điểm của BC

IM//AC

Do đó: M là trung điểm của AB

=>AB=6cm

Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

hay AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Xét tứ giác ADCI có 

N là trung điểm của AC

N là trung điểm của DI

Do đó: ADCI là hình bình hành

mà IA=IC

nên ADCI là hình thoi

1,Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AM. Qua H kẻ đường thẳng // AB cắt AC tại D, kẻ đường thẳng // AC vắt AB tại E . Chứng minh:a, AH=DEb,BAM vuông góc với DEc, tam giác ABC cần thêm điều kiện gì để AEHD là hình vuông a Cho AB=6,AC=8. Tính SAEMD2,Cho ABCD là hcn có O là giao điểm của 2 đường chéo.Trên OB lấy I.Gọi E là điểm đối xứng với A qua I.a,C/M OIEC là hình thangb, Gọi K là...
Đọc tiếp

1,Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến AM. Qua H kẻ đường thẳng // AB cắt AC tại D, kẻ đường thẳng // AC vắt AB tại E . Chứng minh:

a, AH=DE

b,BAM vuông góc với DE

c, tam giác ABC cần thêm điều kiện gì để AEHD là hình vuông 

a Cho AB=6,AC=8. Tính SAEMD

2,Cho ABCD là hcn có O là giao điểm của 2 đường chéo.Trên OB lấy I.Gọi E là điểm đối xứng với A qua I.

a,C/M OIEC là hình thang

b, Gọi K là trung điểm của CE.C/M IK=OC

c, Đường thẳng IK cắt BC tại F và cắt DC tại H,C/M tam giác KHC cân

d, Tứ giác ABCD cần thêm điều kiện gì để OIKC là hcn

3, Cho tam giác ABC có góc A=90độ, AB<AC,trung tuyến AM.Vẽ tia Mx//AB cắt AC tại H.Trên tia Mx lấy điểm K sao cho MK=AB

a,C/M BM=AK

b,C/M M,K đx với nhau qua AC

c, Từ C vẽ đường thẳng vuông góc với AC cắt AM tại Q.C/M ACQB là hcn

 

0
29 tháng 12 2017

B C A M H K N D O I

a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.

Khi đó hai đường chéo bằng nhau nên BM = HK.

b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.

Vậy thì K là trung điểm BC.

Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.

Lại có MN vuông góc BC nên BMCN là hình thoi.

Dễ thấy rằng MK = AB/2 hay MN = AB.

Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.

Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.

c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.

Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.

Vậy nên BM giao AM tại trung điểm mỗi đoạn.

Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.

d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.

Ta có:  do KM // AB, áp dụng Talet:

 \(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)

\(\Rightarrow IM=2OM\)

Áp dụng Talet cho tam giác AND và ADC ta có:

\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)