Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABK\)và \(\Delta C\text{D}K\)có:
\(\widehat{A_1}=\widehat{C_2}\)( 2 góc nội tiếp cùng chắn cung BD )
\(\widehat{AKB}=\widehat{CK\text{D}}\)( đối đỉnh )
\(\Rightarrow\Delta ABK~\Delta C\text{D}K\left(g-g\right)\)
\(\Rightarrow\frac{KA}{KB}=\frac{KC}{K\text{D}}\Rightarrow KA.K\text{D}=KB.KC\)
b) Kéo dài CH và BH cắt AB và AC lần lượt tại N và M
Xét \(\Delta HC\text{D}\) có:
CK vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\Delta HC\text{D}\)cân tại C
\(\Rightarrow\)CK là đường phân giác của \(\widehat{HC\text{D}}\Rightarrow\widehat{C_1}=\widehat{C_2}\)
Xét \(\Delta AMH\) và \(\Delta CKH\)có:
\(\widehat{AHM}=\widehat{CHK}\)( đối đỉnh )
\(\widehat{A_1}=\widehat{C_1}\)( cùng bằng \(\widehat{C_2}\))
\(\Rightarrow\Delta AMH~\Delta CKH\left(g-g\right)\)
\(\Rightarrow\widehat{AMH}=\widehat{CKH}=90^0\)
Hay \(CM\perp AB\)
Xét \(\Delta ABC\)có:
2 đường cao cắt nhau tại H
\(\Rightarrow\)H là trực tâm của tam giác ABC
c) Ta có: DE // BC Mà \(A\text{D}\perp BC\Rightarrow DE\perp A\text{D}\Rightarrow\widehat{FDE}=90^0\)
Xét \(\Delta AFB\)Và \(\Delta\text{E}FD\)có:
\(\widehat{F_1}=\widehat{F_2}\)( đối đỉnh )
\(\widehat{A_1}=\widehat{FED}\)( góc nội tiếp cùng chắn cung BD )
\(\Rightarrow\Delta\text{A}FB~\Delta\text{E}FD\left(g-g\right)\)
\(\Rightarrow\widehat{ABF}=\widehat{E\text{D}F}=90^0\)
Xét tam giác ABE nội tiếp đường tròn ( O, R )
có: \(\widehat{ABE}=90^0\)\(\Rightarrow\)AE là đường kính của ( O, R )
\(\Rightarrow\)A , O , E thẳng hàng
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)
F là giao điểm của DK với (O)\(\left(F\ne D\right)\)
Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)
\(\Rightarrow\)Tứ giác OCAK nội tiếp.
\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)
Mà \(\widehat{COK}+\widehat{COF}=180^0\)
\(\Rightarrow\widehat{CAK}=\widehat{COF}\)
\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))
Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)
Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)
\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)
\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)
\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)
\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)
\(\Rightarrow\Delta CAQ\)cân tại A.
Lại có: AC=AB (Tính chất tiếp tuyến)
AB=AP(\(\Delta ABP\) cân tại A)
\(\Rightarrow AP=AC=AB=AQ\)
\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)
\(\Rightarrow\Delta CPQ\)vuông tại C.
=>F,C,P thẳng hàng.
=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))
=> F là trực tâm của \(\Delta DPQ\)
=> F trùng với H.
Mà F thuộc (O)
=> H thuộc (O)
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
a) Vẽ OM \(\perp\)BC ( M \(\in\)BC )
OM cắt DE tại N
DE// BC ( gt ) có ON \(\perp\)DE ,tứ giác BCDE là hình thang
OM \(\perp\)BC => M là trung điểm của BC
ON\(\perp\)DE => N là trung điểm của DE
MN là trục đối xứng của hình thang cân=> đpcm
d) 1)BC //DE ( dt) , AD \(\perp\)BC ( gt )
=> AD\(\perp\)DE
góc ADE = 90 độ => AE là đường kính của đường tròn ( O)
=> A,O,E thẳng hàng ( đpcm )
2) BE = CD ( BECD là hình thang cân )
AE là đường kính nên góc ABE = 90 độ
Tam giác ABE vuông tại E ,theo định lí PI-ta- go có :
AB2 + BE2 = OE2
AB2 + CD2 =( 2.R)2
AB2 + CD2 =4R2
Chứng minh tương tự ,ta có : AC2 + BD2 =4R2
Ta có : AB2 + BD2 + CD2 + AC2 = 8.R2
Câu a)
Vì DE=BC nên: sđ cung BD=sđ cung CE
\(\Rightarrow\)sđ cung BE=sđ cung CD
\(\Leftrightarrow\widehat{BCE}=\widehat{DBC}\)
Tứ giác BCED có DE//BC nên BCED là hình thang
Mà \(\widehat{BCE}=\widehat{DBC}\Rightarrowđpcm\)
Câu b)
Vì ABDC là tứ giác nội tiếp nên: \(\widehat{ABA'}=\widehat{CDA'}\)
Xét \(\Delta ABA'\)và \(\Delta CDA'\)có
+\(\widehat{ABA'}=\widehat{CDA'}\)
+\(\widehat{AA'B}=\widehat{CA'B}\)
Do đó 2 tam giác đó đồng dạng
\(\Rightarrow\frac{AA'}{A'C}=\frac{A'B}{A'D}\)\(\Rightarrowđpcm\)
Câu c)
Gọi giao BH với AC là B'
Tam giác BHD có BA' vừa là đường cao và vừa là đường trung tuyến
nên tam giác BHD cân tại B
\(\Rightarrow\widehat{BHD}=\widehat{BDA}\)
\(\Leftrightarrow\widehat{AHB'}=\widehat{BDA}\)
\(\Leftrightarrow\widehat{AHB'}+\widehat{DAC}=\widehat{BDA}+\widehat{DAC}=\widehat{BDA}+\widehat{DBC}=90^o\)
\(\Leftrightarrow BB'\perp AC\)
Tam giác ABC có H là giao 2 đường cao AA' và BB'
Vậy H là trực tâm của tam giác ABC
Câu d)
Ý 1:
Có: DE//BC mà AD vuông góc BC
Suy ra: AD vuông góc DE
nên tam giác ADE vuông tại D
Suy ra: AE là đường kình đường tròn ngoại tiếp tam giác ADE
Vậy A,O,E thẳng hàng
Ý 2:
Vì BCED là hình thang cân nên:
\(\hept{\begin{cases}BE=CD\\BD=CE\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}BE^2=CD^2\\BD^2=CE^2\end{cases}\Leftrightarrow}\hept{\begin{cases}CD^2+AB^2=BE^2+AB^2=AE^2=4R^2\\AC^2+BD^2=AC^2+CE^2=AE^2=4R^2\end{cases}}\)
Cộng lại sẽ tích đc tổng đó theo R
Hình vẽ:(không biết nó có hiện ra không nên bạn thông cảm)