K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3

a) Tứ giác BNMC có:

\(\widehat{BNC}=\widehat{BMC}=90^0\) (do BM và CN là hai đường cao của \(\Delta ABC\))

\(\Rightarrow M,N\) cùng nhìn BC dưới một góc \(90^0\)

\(\Rightarrow BNMC\) nội tiếp

*) Gọi \(I\) là trung điểm của BC

\(\Delta BMC\) vuông tại M, có MI là đường trung tuyến ứng với cạnh huyền BC

\(\Rightarrow IM=IB=IC=\dfrac{BC}{2}\) (1)

\(\Delta BNC\) vuông tại N, có NI là đường trung tuyến ứng với cạnh huyền BC

\(\Rightarrow IN=IB=IC=\dfrac{BC}{2}\) (2)

Từ (1) và (2) \(\Rightarrow IM=IN=IB=IC=\dfrac{BC}{2}\)

Vậy \(I\) là tâm của đường tròn ngoại tiếp tứ giác BNMC

b) Do BNMC là tứ giác nội tiếp (cmt)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}\) (góc ngoài tại đỉnh M bằng góc trong tại đỉnh B của tứ giác BNMC)

Xét \(\Delta AMN\) và \(\Delta ABC\) có:

\(\widehat{A}\) chung

\(\widehat{AMN}=\widehat{ABC}\) (cmt)

\(\Delta AMN\) ∽ \(\Delta ABC\) (g-g)

a: Xét tứ giác BNMC có \(\widehat{BNC}=\widehat{BMC}=90^0\)

nên BNMC là tứ giác nội tiếp đường tròn đường kính BC

tâm I là trung điểm của BC

b: Ta có: BNMC là tứ giác nội tiếp

=>\(\widehat{BNM}+\widehat{BCM}=180^0\)

mà \(\widehat{BNM}+\widehat{ANM}=180^0\)(hai góc kề bù)

nên \(\widehat{ANM}=\widehat{ACB}\)

Xét ΔANM và ΔACB có

\(\widehat{ANM}=\widehat{ACB}\)

\(\widehat{NAM}\) chung

Do đó: ΔANM~ΔACB

a: Xét tứ giác BNMC có 

\(\widehat{BNC}=\widehat{BMC}=90^0\)

Do đó: BNMC là tứ giác nội tiếp

hay B,N,M,C cùng thuộc một đường tròn

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{NAC}\) chung

Do đó: ΔAMB\(\sim\)ΔANC

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{NAC}\) chung

Do đó: ΔAMN\(\sim\)ΔABC

6 tháng 3 2022

https://hoc24.vn/cau-hoi/cho-tam-giac-nhon-efg-cac-duong-cao-emfngk-cat-nhau-tai-hachung-minh-enmf-noi-tiep-va-widehatkmn2widehatkfnb-chung-minh-fkng-noi-tiep-va-xac-dinh-tam-p-cua-duong-tron-ngoai-tiep-tu-giac.5046725334376

cj giúp e vs ạ

a: góc ANH+góc AMH=180 độ

=>AMHN nội tiếp

b: Tham khảo

Tứ giác MCDE nội tiếp nên góc MED = 180 - C (1).

Tứ giác NBDE nội tiếp nên góc NED = 180 - B (2).

Mà góc MEN = 360 - MED - NED (3).

Thay (1), (2) vào (3) được: góc MEN = 360 - (180 - C) - (180 - B) = B +C = 180 - A.

Suy ra MEN + MAN =180. Vậy tứ giác MENA nội tiếp.

=>E thuộc đường tròn ngoại tiếp ΔAMN

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc CDH+góc CEH=90+90=180 độ

=>CDHE nội tiếp

b: góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có

góc BEF=góc DEH

góc BFE=góc DHE

=>ΔBFE đồng dạng với ΔDHE

a: góc ADH+góc AKH=180 độ

=>ADHK nội tiếp

b: góc BKC=góc BDC=90 độ

=>BKDC nội tiếp

=>góc AKD=góc ACB

Xét ΔAKD và ΔACB có

góc AKD=góc ACB

góc A chung

=>ΔAKD đồng dạng với ΔACB

Sửa đề: Hai đường cao BN,CK

a: góc AKH+góc ANH=180 độ

=>AKHN nội tiếp

Tâm là trung điểm của AH

b: Xet ΔANB vuông tại N và ΔAKC vuông tại K có

góc A chung

=>ΔANB đồng dạng với ΔAKC

=>NB/KC=AN/AK

=>NB*AK=AN*KC

c: góc BKC=góc BNC=90 độ

=>BKNC nội tiếp

d: Xét ΔACB co

BN,CK là đường cao

BN cắt CK tại H

=>H là trực tâm

=>AH vuông góc CB