K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Giải:

Hình bạn tự vẽ nhé.

a) Vì M là trung điểm của đoạn thẳng BC (gt)

nên BM = CM

Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\AMchung\\BM=CM\left(cmt\right)\end{cases}}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)   (đpcm)

b) Xét \(\Delta ACM\) và \(\Delta BEM\) có:

EM = AM (gt)

\(\widehat{BME}=\widehat{AMC}\) (2 góc đối đỉnh)

BM = CM (cmt)

\(\Rightarrow\Delta ACM=\Delta EBM\left(c.g.c\right)\)

 \(\Rightarrow\widehat{EBM}=\widehat{ACM}\) (2 góc tương ứng)

Mà góc này ở vị trí so le trong

\(\Rightarrow AC//BE\) (dấu hiệu nhận biết)   (đpcm)

c) Xét \(\Delta ABM\) và \(\Delta CEM\) có:

AM = EM (gt)

\(\widehat{CME}=\widehat{AMB}\) (2 góc đối đỉnh)

BM = CM (cmt)

\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)

\(\Rightarrow\) AB = CE (2 cạnh tương ứng)

        \(\widehat{ABM}=\widehat{ECM}\) (2 góc tương ứng) hay \(\widehat{ABC}=\widehat{BCE}\)

Xét \(\Delta BCE\) và \(\Delta ABC\) có:

\(\hept{\begin{cases}AB=CE\left(cmt\right)\\\widehat{BCE}=\widehat{ABC}\left(cmt\right)\\BCchung\end{cases}}\Rightarrow\Delta ABC=\Delta BCE\left(c.g.c\right)\)

\(\Rightarrow\widehat{BEC}=\widehat{BAC}\) (2 góc tương ứng) 

hay \(\widehat{CEK}=\widehat{BAH}\)

Ta có: CK _|_ BE tại K (gt)

           BH _|_ AC tại H (gt)

\(\hept{\begin{cases}\widehat{CKE}=90^o\\\widehat{AHB}=90^o\end{cases}}\Rightarrow\widehat{CKE}=\widehat{AHB}=90^o\)

Xét \(\Delta CEK\) và \(\Delta ABH\)có:

\(\hept{\begin{cases}\widehat{CKE}=\widehat{AHB}=90^o\left(cmt\right)\\AB=CE\left(cmt\right)\\\widehat{CEK}=\widehat{BAH}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta CEK=\Delta BAH\) (cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{ABH}=\widehat{ECK}\) (2 góc tương ứng)   (đpcm)

d) Gọi giao điểm của EM và CK là P, của BH và AM là Q

Ta có: \(\widehat{BEM}=\widehat{CAM}\) (vì \(\Delta ACM=\Delta EBM\))  \(\Rightarrow\widehat{KEP}=\widehat{HAQ}\)

Ta có: \(\widehat{CKE}=\widehat{AHB}\left(cmt\right)\)

\(\Rightarrow\widehat{EKP}=\widehat{AHQ}\)

Xét \(\Delta EKP\) và \(\Delta AHQ\) có:

\(\widehat{KEP}=\widehat{HAQ}\left(cmt\right)\)

EK = AH (vì \(\Delta CEK=\Delta BAH\))

\(\widehat{EKP}=\widehat{AHQ}\left(cmt\right)\)

\(\Rightarrow\Delta EKP=\Delta AHQ\left(g.c.g\right)\)

\(\Rightarrow KP=HQ\) (2 cạnh tương ứng)

Lại có: BE = AC (vì \(\Delta BEM=\Delta CAM\))

            EK = AH (cmt)

Mà \(\hept{\begin{cases}BE=BK+EK\\AC=CH+AH\end{cases}}\Rightarrow BK=CH\)

Vì BE // AC (cmt)

nên \(\widehat{BKH}=\widehat{CHK}\) (2 góc so le trong)

Xét \(\Delta BHK\) và \(\Delta CHK\) có: 

\(\hept{\begin{cases}BK=CH\left(cmt\right)\\\widehat{BKH}=\widehat{CHK}\left(cmt\right)\\HKchung\end{cases}}\Rightarrow\Delta BHK=\Delta CKH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BHK}=\widehat{CKH}\) (2 góc tương ứng)

hay \(\widehat{MHQ}=\widehat{MKP}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow BH//CK\) (dấu hiệu nhận biết)

\(\Rightarrow\widehat{KPQ}=\widehat{HQP}\) (2 góc so le trong)

hay \(\widehat{HQM}=\widehat{KPM}\)

Xét \(\Delta KMP\) và \(\Delta HMQ\) có:

\(\hept{\begin{cases}\widehat{HQM}=\widehat{KPM}\left(cmt\right)\\KP=HQ\left(cmt\right)\\\widehat{MHQ}=\widehat{MKP}\left(cmt\right)\end{cases}}\Rightarrow\Delta KMP=\Delta HMQ\left(g.c.g\right)\)

\(\Rightarrow\)KM = HM (2 cạnh tương ứng)  (*)

        \(\widehat{KMP}=\widehat{HMQ}\) (2 góc tương ứng)

Mà \(\widehat{HMQ}+\widehat{HMP}==180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{KMP}+\widehat{HMP}=180^o\)

hay \(\widehat{HMK}=180^o\)

\(\Rightarrow\)3 điểm M, H, K thẳng hàng  (**)

Từ (*), (**)

\(\Rightarrow\) M là trung điểm của HK   (đpcm)

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc với BC

 

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có

AF chung

MF=DF

Do đó: ΔAMF=ΔADF

=>góc MAF=góc DAF

=>góc DAF=góc BAM

3 tháng 12 2015

ai thi ioe lớp 5 vòng 11 hộ mình ko

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

a: Xét ΔABM và ΔACM có

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên  AM là đường cao

c: Xét tứ giác ABDC có 

M là trung điểm của BC

M la trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

9 tháng 1 2022

Cảm ơn bạn nhìu nha yeu

 

29 tháng 3 2021

ssssssssssssssssssssssssssssssssssssssssssssssssssssssaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii