K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

?????????????????????????????????????????????????????

16 tháng 12 2022

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD
AD chung

Do đó: ΔABD=ΔAED

=>DB=DE

b: Xét ΔDBF và ΔDEC có

góc DBF=góc DEC

DB=DE

góc BDF=góc EDC

Do đo: ΔDBF=ΔDEC

c:ΔDBF=ΔDEC

nên góc BDF=góc EDC

=>góc BDF+góc BDE=180 độ

=>E,D,F thẳng hàng

16 tháng 12 2022

có hình k ạ ?

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

24 tháng 10 2021

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE và \(\widehat{ABD}=\widehat{AED}\)

hay \(\widehat{DBF}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có 

\(\widehat{DBF}=\widehat{DEC}\)

DB=DE

\(\widehat{BDF}=\widehat{EDC}\)

Do đó: ΔDBF=ΔDEC

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{DBF}=\widehat{DEC}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

b: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Ta có: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDB}=180^0\)

nên \(\widehat{BDF}+\widehat{EDB}=180^0\)

=>E,D,F thẳng hàng

d: ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

20 tháng 1

mới gần 10 năm thôi nhỉ tầm giờ chắc chủ câu này có gđ luôn r=)

 

25 tháng 12 2023

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

b: Ta có: ΔABE=ΔADE

=>EB=ED

=>E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

=>A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

=>AE\(\perp\)BD tại H và H là trung điểm của BD

c: Xét ΔEBM và ΔEDC có

EB=ED

\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)

EM=EC

Do đó: ΔEBM=ΔEDC

=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC

Ta có: \(\widehat{EBM}=\widehat{EDC}\)

\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)

Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)

=>A,B,M thẳng hàng

Ta có: AB+BM=AM

AD+DC=AC

mà AB=AD và BM=DC

nên AM=AC

=>A nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của MC(2)

Từ (1) và (2) suy ra AE là đường trung trực của MC

=>AE\(\perp\)MC

mà AE\(\perp\)BD

nên BD//MC