K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

(Bạn tự vẽ hình)

a) Gọi AH giao BC tại điểm F. H là trực tâm của tam giác ABC => AH vuông góc với BC tại F.

Xét tam giác ABC: AF vuông góc BC, AB<AC => BF<CF (Quan hệ đường xiên, hình chiếu)

Xét tam giác AFB và tam giác AFC có:

Cạnh AF chung

^AFB=^AFC=90o   => ^BAF < ^CAF (Quan hệ giữa góc và cạnh đối diện trong 2 tam giác)

BF<CF (cmt)

^BAF < ^CAF hay ^BAH<^CAH (đpcm)

b) Tam giác ABC có: AB<AC => ^ABC>^ACB hay ^EBC>^DCB.

Xét tam giác BEC và tam giác CDB có:

^BEC=^CDB=90o

Cạnh BC chung        => CE>BD. 

^EBC>^DCB (cmt)

  Vậy CE>BD.

3 tháng 11 2019

câu đầu sai rồi bạn ơi

29 tháng 11 2016

A D E F B C H

Kéo dài AH cắt BC tại F .

=> AF\(_{\perp}\)BC

=> \(\Delta ABF;\Delta ACF\) vuông tại F

=> \(\begin{cases}\widehat{BAF}=90^0-\widehat{ABF}\\\widehat{CAF}=90^0-\widehat{ACF}\end{cases}\)(1)

Mặt khác vì BC < AC

\(\Rightarrow\widehat{ABC}< \widehat{ACB}\) ( 2)

Từ (1) và (2)

=> \(\widehat{BAF}>\widehat{CAF}\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E co

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AE*AB; AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE;AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

d: ΔADE đồng dạngvới ΔABC

=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ADE}=30\left(cm^2\right)\)