Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +Xét tam giác AEN và tam giác BNC có :
AN=BN (gt)
∠ANE=∠CNB ( 2 góc đối đỉnh )
EN=NC (gt)
=> tam giác AEN= tam giác BNC ( c.g.c )
=> AE=BC (1)
+ Xét tam giác AMD và tam giác CMB có :
AM=MC (gt)
∠AMD=∠CMB ( 2 góc đối đỉnh )
MD=MB (gt)
=> tam giác AMD = tam giác CMB (c.g.c)
=> AD=BC (2)
Từ (1),(2) => AE=AD
b) Ta có : ∠ABC + ∠BAC + ∠BCA = 180
Mà ∠ABC = ∠EAB ( tam giác AEN = tam giác BCN )
∠ACB = ∠CAD ( tam giác AMD = tam giác CMB )
=> ∠CAD + ∠BAC + ∠EAB = 180
=> E,A,D thẳng hàng
nối c với e
ta thấy abce là hình bình hành
vì có 2 dường chéo ac và be cắt nhau tại trung điểm mỗi đường
suy ra ae song song và bằng bc (1)
nối b với e
ta thấy acbf là hình bình hành
vì có 2 dường chéo ab và ec cắt nhau tại trung điểm mỗi đường
suy ra af song song và bằng bc (2)
từ (1) và (2) suy ra AE = AF = BC
A là trung điểm EF
xét tam giác ame và tam giác bmc
me=mc (gt)
góc ema= góc bmc (đối đỉnh)
am=bm( m là trung điểm của ab)
=> tam giác ame= tam giác bmc(c.g.c)
=> góc eam= góc cbm ( 2 cạnh tương ứng)
mà góc eam và góc cbm SLT
=>ae //bc
xét tam giác afn và tam giác cbn
fn=bn (gt)
góc an f= góc bnc (đ đ)
an=cn ( n là trung điểm của ac)
=> tam giác a fn= tam giác cbn (c.g.c)
=> a f=cb (2 cạnh t ung)
mà ae=cb (tam giác ame= tam giác bmc)
=>a f= ae (=cb)
=> a là trung điểm của e f
Bạn ơi, bạn chỉ mình cách viết kí hiệu góc ở hoc24.vn này đc ko ?
bấn vào chức năng X2 trên thanh công cụ chỗ ghi câu hỏi nha và cảm ơn bạn nữa
bài 2)
Ta có: 16x : 2y = 128
\(\Leftrightarrow\)24x : 2y = 27
\(\Leftrightarrow\)24x - y = 27
\(\Leftrightarrow\)4x - y = 7 (1)
Ta lại có: x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y (2)
Thay (2) vào (1) ta đc:
4*3y - y = 7
\(\Leftrightarrow\)11y = 7
\(\Leftrightarrow\)y = \(\frac{7}{11}\)
\(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)
3,
A B C M N E F
a, Xét t/g AME và t/g BMC có:
MA = MB (gt)
ME = MC (gt)
góc AME = góc BMC (đối đỉnh)
Do đó t/g AME = t/g BMC (c.g.c)
b, Vì t/g AME = t/g BMC (câu a) => góc AEM = góc BCM (2 góc tương ứng)
Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC
c, Xét t/g ANF và t/g CNB có:
AN = CN (gt)
NF = NB (gt)
góc ANF = góc CNB (đối đỉnh)
Do đó t/g ANF = t/g CNB (c.g.c)
=> AF = BC (2 cạnh tương ứng)
d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)
Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC
Ta có: AE // BC, AF // BC
=> AE trùng AF
=> A,E,F thẳng hàng (1)
Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)
Ta lại có: AE = BC, AF = BC => AE = AF (2)
Từ (1) và (2) => A là trung điểm của EF
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
1. Xét tam giác MAE và tam giác MCB có:
ME = MB (gt)
MA = MC (gt)
Góc M1 = góc M2 (đối đỉnh)
=> Tam giác MAE = Tam giác MCB (c.g.c)
2. Xét tứ giác AEBC có:
M là trung điểm BE (gt)
M là trung điểm AC (gt)
=> Tứ giác AEBC là hình bình hành
=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:
N là trung điểm BA (gt)
N là trung điểm FC (gt)
=> Tứ giác FABC là hình bình hành
=> FA // BC và FA = BC (2)
Từ (1), (2) => AE = AF
a) Vì AM là phân giác của góc BAC
nên góc BAM = CAM
Xét ΔBAM và ΔCAM có:
AB = AC ( giả thiết )
Góc BAM = CAM ( chứng minh trên )
AM cạnh chung.
=> Δ BAM = ΔCAM ( c.g.c )
=> BM = CM ( 2 cạnh tương ứng )
mà M nằm giữa B và C
Do đó M là trung điểm của BC → ĐPCM.
b) Ta có: AB + BE = AE
AC + CF = AF
mà AB = AC ( đề bài ); AE = AF (đề bài)
=> BE = CF.
Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )
Lại có: Góc ABC + CBE = 180 độ (kề bù)
Góc ACB + BCF = 180 độ (kề bù)
=> ABC + CBE = ACB + BCF
=> Góc CBE = BCF.
Xét ΔBCE và ΔCBF có:
BE = CF ( chứng minh trên)
Góc CBE = BCF ( chứng minh trên)
BC cạnh chung ( theo hình vẽ)
=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.
c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM
Xét ΔMBE và ΔMCF có:
MB = MC ( chứng minh ở câu a )
Góc EBM = FCM ( chứng minh trên)
BE = FC ( chứng minh ở câu b)
=> ΔMBE = ΔMCF ( c.g.c )
=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.
d) Xét ΔEMN và ΔFMN có:
EM = FM ( chứng minh ở câu c )
EN = FN ( N là trung điểm EF )
MN chung.
=> ΔEMN = ΔFMN.
=> Góc ENM = FNM (2 góc tương ứng)
Suy ra MN là tia phân giác của góc ENF (1)
Có: góc BAM = CAM
Suy ra AM là tia phân giác của góc BAC (2)
Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.
Do đó A, M, N thẳng hàng → ĐPCM.
a: Xét tứ giác ACBF có
N là trung điểm của CF
N là trung điểm của AB
Do đó: ACBF là hình bình hành
Suy ra: AF=BC
b: Xét tứ giác AECB có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra:AE//BC và AE=BC
mà AF/BC
và AE,AF có điểm chung là A
nên A,E,F thẳng hàng
mà AE=AF
nên A là trung điểm của EF
c: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình
=>MN//BC
hay MN//FE