K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

tôi có nik tuyensinh247

ai muốn có ko ?

2 khóa học : tiếng anh ; toán tôi bán lại chỉ có 100.000đ thui (1nik) trước đây tôi mua 2 khóa học mất 1.200.000 đ

10 khóa học :ngữ văn,sinh,toán,lý,anh,đề thi văn,anh,toán ,lý,sinh tôi bán lại chỉ có 500.000đ trươcqs đây tôi mua hơn 3.000.000đ (1nik)

ai muốn mua nhanh tay

10 tháng 12 2024

Cho tam giác ABC coa AB<AC trên cạnh ac lấy điểm M sao cho  AB = AM Gọi I là trung điểm của BM Tia an cắt cạnh BC tại N

a)Chứng minh tam giác aby = tam giác Amy và ai vuông góc với BMB

b)chứng minh nb = nm

c) Trên tia đối của tia ab lấy điểm D sao cho BD = MC Chứng minh ba điểm M N D thẳng hàng

6 tháng 3 2023

xét ΔABM và ΔANM, ta có : 

AB = AN (gt)

\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))

AM là cạnh chung

→ ΔABM = ΔANM (c.g.c)

a: Xét ΔABM và ΔANM co

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

b: ΔABM=ΔANM

=>góc ABM=góc ANM=90 độ

=>góc NMC=90 độ-góc C=góc BAC

5 tháng 2 2017

bai2

ve ho tui hinh

20 tháng 2 2017

giúp tôi nữa

17 tháng 6 2017

đề sai rồi

30 tháng 9 2017

Bạn tìm bài này theo đường link này nha!

https://olm.vn/hoi-dap/question/36403.html

chúc bạn may mắn

Trả lời:

Tam giác AIM = tam giác CIM ( ch-chg)

nên MA=MC. tam giác AMC cân tại đỉnh M. Tam giác MAC và tam giác ABC là tam giác cân lại có chung gióc C nên góc ở đỉnh của chúng bằng nhau

Vậy góc AMC = góc BAC.

Ta có : ABMˆ+ABCˆ=180ABM^+ABC^=180 và CANˆ+CAMˆ=180CAN^+CAM^=180 ( vì cùng kề bù)

do đó: góc ABM = góc CAM.

Vậy tam giác ABM= tam giác CAN (c.g.c)

=> CN=AM mà AM=CM nên suy ra CM=CN. Tam giác MCN cân tại C

Tam giác ABC cân tại A có góc BAC =45

=> ACBˆ=180−452=67o30′ACB^=180−452=67o30′

Mà ACBˆ=MACˆACB^=MAC^ nên MABˆ=67o30′

Khi đó MABˆ=MACˆ−BACˆ=67o30′−450=22o30′MAB^=MAC^−BAC^=67o30′−450=22o30′

⇒ACNˆ=22030′⇒ACN^=22o30′

MCNˆ=MCAˆ+ACMˆ=67030′+22o30′=90oMCN^=MCA^+ACM^=67o30′+22o30′=90o

\(\Rightarrow\)Tam giác CMN vuông cân ở C

                                    ~Học tốt!~