Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:AB<AC
=>góc C<góc B
góc BAM+góc B+góc AMB=góc CAM+góc C+góc AMC
mà góc BAM=góc CAM; góc B>góc C
nên góc AMB<góc AMC
b: Xét ΔABC có AM là phân giác
nên MB/AB=MC/AC
mà AB<AC
nên MB<MC
c: góc AMB<góc AMC
=>góc AMB<1/2(góc AMB+góc AMC)=90 độ
=>góc AMB nhọn
a)Xét \(\Delta ABM\) và \(\Delta ACM\) ta có:
AM chung
\(\widehat{BAM}=\widehat{CAM}\) (vì AM là phân giác của \(\widehat{BAC}\) (gt))
\(AB=AC\) (gt)
\(\Rightarrow\Delta ABM=\)\(\Delta ACM\) (c.g.c)
Suy ra MB=MC (2 cạnh tương ứng)
b)Vì \(\Delta ABM=\)\(\Delta ACM\) (cmt)
Suy ra \(\widehat{ABM}=\widehat{ACM}\) (2 góc tương ứng)
c)Vì \(\Delta ABM=\)\(\Delta ACM\) (cmt)
Suy ra \(\widehat{CMA}=\widehat{BMA}\)(2 góc tương ứng) (1)
Mà ta có: \(\widehat{CMA}+\widehat{BMA}=180^o\) (2)
Từ (1) và (2) suy ra \(\widehat{CMA}=\widehat{BMA}=\frac{180^o}{2}=90^o\)
Suy ra AM_|_ BC tại M
Giải:
Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM,\Delta ACM\) có:
\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)
\(AB=AC\left(gt\right)\)
\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(g-c-g\right)\)
\(\Rightarrow MB=MC\) ( cạnh t/ứng )
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\) ( góc t/ứng )
Mà \(\widehat{M_1}+\widehat{M_2}=180^o\) ( kề bù )
\(\Rightarrow\widehat{M_1}=\widehat{M_2}=90^o\)
\(\Rightarrow AM\perp BC\)
Vậy....
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay MB=MC
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=9+12+15=36\left(cm\right)\)
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
Xét tam giác ABM và tam giác ACM có:
AM là tia phân giác của góc A hay \(\widehat{A_1}=\widehat{A_2}\) (gt)
AB = AC (gt) ; AM (cạnh chung)
Do vậy \(\Delta ABM=\Delta ACM\) (c.g.c)
Do đó \(BM=CM\) (hai cạnh tương ứng)
Suy ra M là trung điểm của BC
b) \(\Delta ABM=\Delta ACM\Rightarrow\widehat{M_1}=\widehat{M_2}\) hay \(\frac{\widehat{M_1}}{1}=\frac{\widehat{M_2}}{2}\)
Lại có: \(\widehat{M_1}+\widehat{M_2}=180^o\) (kề bù).Theo t/c dãy tỉ số bằng nhau:
\(\frac{\widehat{M_1}}{1}=\frac{\widehat{M_2}}{1}=\frac{\widehat{M_1}+\widehat{M_2}}{1+1}=\frac{180^o}{2}=90^o\)
hay \(\widehat{M_1}=\widehat{M_2}=90^o\Rightarrow AM\perp BC\) (do tia phân giác góc A cắt BC tại M)
Hình vẽ
Bài làm
a) Vì AM là tia phân giác của \(\widehat{BAC}\)
=> \(\widehat{BAM}=\widehat{MAC}\)
Xét tam giác ABC
Ta có: AB=AC ( giả thiết )
\(\widehat{BAM}=\widehat{MAC}\)( Vì AM là tia phân giác của góc BAC )
AM là cạnh chung
=> Tam giác BAM bằng tam giác MAD ( c.g.c )
=> BM=MC ( Vì tam giác BAM=tam giác MAD )
=> M là trung điểm của BC ( đpcm )
b) Vì AM là tia phân giác của góc A
BM=MC
Mà M là trung điểm của BC
=> AM vuông góc với BC. ( đpcm )
# Chúc bạn học tốt #
xét hai tam giác ABM và tam giác ACM có
AB<AC (gt)
AC cạnh chung
góc BAM < góc CAM
suy ra tam giác ABM < tam giác ACM
suy ra MB <MC ( 2 cạnh tương ứng)