K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

a) Xét tam giác ABM và tam giác ACM có:

AB = AC (giả thiết)

BM = CM ( VÌ M là trung điểm BC)

AM là cạnh chung

Do đó tam giác ABM = tam giác ACM (c.c.c)

Vì tam giác ABM = tam giác ACM (chứng minh trên)

=> góc A1 = góc A2 ( hai góc tương ứng)

Vậy AM là tia phân giác góc BAC.

24 tháng 12 2019

Hình bạn tự vẽ nha!

b) Xét 2 \(\Delta\) \(BCN\)\(DCN\) có:

\(BC=DC\left(gt\right)\)

\(\widehat{BCN}=\widehat{DCN}\) (vì \(CN\) là tia phân giác của \(\widehat{BCD}\))

Cạnh CN chung

=> \(\Delta BCN=\Delta DCN\left(c-g-c\right)\)

=> \(\widehat{BNC}=\widehat{DNC}\) (2 góc tương ứng).

Ta có: \(\widehat{BNC}+\widehat{DNC}=180^0\) (vì 2 góc kề bù).

\(\widehat{BNC}=\widehat{DNC}\left(cmt\right)\)

=> \(2.\widehat{BNC}=180^0\)

=> \(\widehat{BNC}=180^0:2\)

=> \(\widehat{BNC}=90^0.\)

=> \(\widehat{BNC}=\widehat{DNC}=90^0\)

=> \(CN\perp BD.\)

Chúc bạn học tốt!

23 tháng 12 2023

em lớp 6 ko bt làm

 

23 tháng 12 2023

em lớp 5 cũng ko biết làm

26 tháng 2 2021

a) Xét tg ABM và ACM có :

AB=AC(gt)

AM-cạnh chung

MB=MB(gt)

=> Tg ABM=ACM(c.c.c)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

=> AM là tia pg góc A (đccm)

b) Xét tg BNC và DNC có :

BC=CD(gt)

\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)

NC-cạnh chung

=> Tg BNC=DNC(c.g.c)

\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)

\(\Rightarrow CN\perp BD\left(đccm\right)\)

c) Có : AB=AC(gt)

=> Tg ABC cân tịa A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)

- Do tg BNC=DNC(cmt)

\(\widehat{ABC}=\widehat{BDC}\)(2)

- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)

- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)

        \(\widehat{ACB}+\widehat{BCE}=180^o\)

Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)

d) Xét tg ACD và EBC có :

BC=CD(gt)

DA=CE(gt)

\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)

=> Tg ACD=EBC(c.g.c)

=> AC=BE

Mà AC=AB(gt)

=> BE=AB (đccm)

#H

8 tháng 3 2020

a/ Xét ΔABM;ΔACMΔABM;ΔACM có :

⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC

⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)

b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :

⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC

⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)

⇔BH=CK

8 tháng 3 2020

BCE=ADC nhes cacs banj

16 tháng 1 2019

a,Xét ABM và ACM

AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)

ABM = ACM

BAM = CAM                                                               (1)

Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)

Từ (1) và (2)

AM là tia phân giác của BAC

16 tháng 1 2019

b,Xét BNC và DNC

NC chung , CB = CD 

Góc BCN = DCN

Tam giác:BNC = DNC

Góc BNC = DCN 

Mà BNC + DCN = 180

BNC = 90

CN vuông góc với BD

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của \(\widehat{BAC}\)

b: Xét ΔCBD có CB=CD

nên ΔCBD cân tại C

Ta có: ΔCBD cân tại C

mà CN là đường phân giác

nên CN\(\perp\)BD

c: Ta có: \(\widehat{ADC}+\widehat{CDB}=180^0\)(hai góc kề bù)

\(\widehat{BCE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{CDB}=\widehat{ACB}\left(=\widehat{ABC}\right)\)

nên \(\widehat{ADC}=\widehat{BCE}\)

ΔCBD cân tại C

mà CN là đường cao

nên N là trung điểm của BD

=>BD=2BN

Xét ΔADC và ΔECB có

AD=EC

\(\widehat{ADC}=\widehat{ECB}\)

DC=CB

Do đó: ΔADC=ΔECB

=>EB=AC

=>EB-AC=AC-CE=AB-AD=BD=2BN