Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMD và ΔAMC có
AM chung
MD=MC
AD=AC
Do đó: ΔAMD=ΔAMC
b: Xét ΔNDC có
NM là đường cao
NM là đường trung tuyến
Do đó:ΔNDC cân tại N
hay ND=NC
a). Ta có AM là đường trung trực của đoạn thẳng BC => AM\(\perp\) BC và BM=CM
Xét tam giác AMB vuông tại M và tam giác AMC vuông tại M có:
AM là cạnh chung.
BM=CM (cmt)
=> Tam giác AMB=tam giác AMC (hai cạnh góc vuông)
b). Tam giác AMB=tam giác AMC
=> AB=AC (hai cạnh tương ứng)
=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (hai góc tương ứng)
=> \(\widehat{ABM}=\widehat{ACM}\) (hai góc tương ứng)
c). Xét tam giác ANB và tam giác ANC có:
AB=AC (cmt)
\(\widehat{BAN}=\widehat{CAN}\) (\(\widehat{BAM}=\widehat{CAM};N\in\) AM)
AN là cạnh chung.
=> Tam giác ANB=tam giác ANC (c.g.c)
abc= 30 độ vì tổng 3 góc của 1 tam giác
=> AC>AB
=> bước sau tự lm
a: Xét ΔAMB và ΔAMC o
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: SỬa đề: So sánh góc AMB và góc AMC
ΔAMB=ΔAMC
=>góc AMB=góc AMC
Giải
a ) Xét tam giác ABC và tam giác A'B'C' có :
\(\widehat{A}=\widehat{A'}\left(GT\right)\)
AB = A'B' ( GT )
AC = A'C' ( GT)
=> Tam giác ABC = Tam giác A'B'C' ( c.g.c)
b ) Xét tam giác AMC và tam giác A'M'C' có :
\(\widehat{A}=\widehat{A'}\)
AC = A'C' ( GT )
AM = A'M' ( GT )
=> tam giác AMC = tam giác A'M'C ( c.g.c )
c ) Vì BM + AM = AB ( vì M nằm giữa A và B )
B'M + A'M' = A'B' ( vì M' nằm giữa A' và B ' )
Mà A'M' = AM , AB = A'B nên BM = B'M'
a) Vì AB<AC(gt)
mà AM=AC(gt)
và A,B,M thẳng hàng(gt)
nên điềm B nằm giữa hai điểm A và M
hay tia CB nằm giữa hai tia CA và CM
\(\Leftrightarrow\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)
hay \(\widehat{ACM}>\widehat{ACB}\)