K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

Tên gì mà độc thế ? Đảo ngược tên lại đi là Mỹ Lệ

13 tháng 1 2016

đảo lại trùng tên òy híhí

Trong ∆ABC có AB < AC

góc ABC= góc ACB (đối diện cạnh lớn hơn là góc lớn hơn) (1)

Ta có: AB = BM (gt)

góc ∆ABM cân tại B

góc M = góc A1(tính chất tam giác cân)

Trong ∆ABM ta có có góc ngoài tại đỉnh B

góc ABC= góc M+ góc A1

Suy ra: góc M=12 góc ABC (2)

Ta có: AC = CN (gt)

∆CAN cân tại C góc N= góc A2 (tính chất tam giác cân)

Trong ∆CAN ta có góc ACB là góc ngoài tại đỉnh C.

⇒góc ACB= góc N+ góc A2

Suy ra: góc N=12 góc ACB (3)

Từ (1), (2) và (3) suy ra: góc M > góc N

b) Trong ∆AMN ta có: góc M> góc N

9 tháng 8 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC, ta có AC > AB

Suy ra: ∠(ABC) > ∠(ACB) (đối diện với cạnh lớn hơn là góc lớn hơn) (1)

Ta có: AB = BM (gt) ⇒ ΔABM cân tại B

Suy ra: ∠(AMB) = ∠A1(tính chất tam giác cân)

Trong ΔABM, ta có ∠(ABC) là góc ngoài tại đỉnh B

Suy ra: ∠(ABC) = ∠(AMB) + ∠A1 hay : ∠(ABC) = 2.∠(AMB)

Suy ra: ∠(AMB) = 1/2 ∠(ABC) (2)

Lại có: AC = CN (gt) ⇒ ΔACN cân tại C

Suy ra: ∠(ANC) = ∠A2(tính chất tam giác cân)

Trong ΔACN, ta có ∠(ACB) là góc ngoài tại đỉnh C

Suy ra: ∠(ACB) = ∠(ANC) + ∠A2 hay ∠(ACB) = 2∠(ANC)

Suy ra: ∠(ANC) = 1/2 ∠(ACB) (3)

Từ (1), (2) và (3) suy ra: ∠(AMB) > ∠(ANC) .

8 tháng 3 2016

các bạn giúp mk nha. mai mình phải nọp r

22 tháng 6 2021

Ta có bài toán sau: Xét tam giác ABC vuông tại A, tam giác MNP vuông tại M.

Nếu \(BC=NP\) hoặc \(BC\equiv NP\)thì \(AC>MP\Leftrightarrow\widehat{ABC}>\widehat{MNP}.\)

Chứng minh:

A B C M N P D O

Trên mặt phẳng chứa hai tam giác, lấy điểm D sao cho \(\Delta BDC=\Delta NMP\) (D,A khác phía so với BC)

Ta có \(\widehat{MNP}=\widehat{DBC},MP=DC\)

Xét tam giác ACD: \(AC>MP=CD\), suy ra \(\widehat{ADC}>\widehat{DAC}\)(1)

Gọi O là trung điểm BC, dễ thấy O cách đều A,B,C,D. Do đó:

\(\widehat{ADC}=\frac{1}{2}\widehat{AOC}=\widehat{ABC};\widehat{DAC}=\frac{1}{2}\widehat{DOC}=\widehat{DBC}=\widehat{MNP}\)(2)

Từ (1),(2) suy ra \(\widehat{ABC}>\widehat{MNP}\). Tương tự ta có thể chứng minh chiều ngược lại của bài toán.

Giải:

A B C M N D H K

Xét \(\Delta BMC\) và \(\Delta CNB\): Chung cạnh BC, BM = CN, \(\widehat{MBC}< \widehat{NCB}\); suy ra \(CM< BN\)

Dựng hình bình hành BMDN, ta có \(CM< BN=MD\)

Xét tam giác CMD: \(CM< MD\), suy ra \(\widehat{MDC}< \widehat{MCD}\)

Dễ thấy tam giác CND cân tại N, do vậy \(\widehat{MDC}-\widehat{NDC}< \widehat{MCD}-\widehat{NCD}\)

Hay \(\widehat{NDM}< \widehat{NCM}\). Gọi H và K là hình chiếu của N trên MD và MC.

Theo bài toán trên thì \(NH< NK\), từ đó \(\widehat{NMH}< \widehat{NMK}\)hay \(\widehat{BNM}< \widehat{CMN}\)(đpcm).

13 tháng 2 2016

Bn vẽ hình giúp mk đã r tính

13 tháng 2 2016

A B C M N I Mk vẽ hình lun r. Bn giài giùm mk đi!

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giácBài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giácBài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BCBài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng: 
   a) Góc AMB < góc AMC
   b) Góc MAB > góc CAM
   c) Góc ADB < góc ADC
   d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
   a) BC > CE; CE ⊥ AC
   b) Góc ABM > góc MBC

0
5 tháng 8 2019

Câu hỏi của Nguyễn Tiến Vững - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!