K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

30 tháng 12 2015

Làm ơn giải giùm hộ với ạ, đang cần gấp

21 tháng 12 2023

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: ta có: ΔABM=ΔDCM

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
c: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔMEB=ΔMFC

=>ME=MF

mà M nằm giữa E và F

nên M là trung điểm của EF

28 tháng 12 2016

A B C D M

a,Xét \(\Delta ABM\) và  \(\Delta DCM\) ta có :

\(AM=MD\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

b, Vì \(\Delta ABM=\Delta DCM\)( Câu a )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên :

=> AB // DC 

c, Ta có : AM là trung tuyến đông thời cũng là đường cao của tam giác ABC cân tại A;

\(\Rightarrow AM⊥BC\)

câu d bn tự làm nha

15 tháng 7 2016

Xét tam giác ABM và tam giác DCM có: 

AM=MD

góc AMB=góc CMD ( đối đỉnh)

BM=CM ( M là trung điểm của BC)

=> tam giác ABM=tam giác DCM( c.g.c)

b) theo a): tam giác ABM=tam giác DCM => góc BAM=góc D

mà chúng là hai góc so le trong => AB//DC

c) Vì AB=AC=> tam giác ABC cân tại A

tam giác ABC có AM là đường trung tuyến nên đồng thời là đường trung trực => AM vuông góc vs BC

d)  Để góc ADC=30 độ thì góc BAM=30 độ

=> góc B= 90 độ-30 độ=60 độ

tam giác ABC cân tai A có góc B =60 độ

=> tam giác ABC đều

Vậy tam giác ABC đều thì góc ADC=30 độ

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

1 tháng 2 2022
 

Tham Khảo :

Bạn tự vẽ hình nha

a) Xét t/g ABM và t/g DCM có:

BM = CM (gt)

AMB = DMC ( đối đỉnh)

MA = MD (gt)

Do đó, t/g ABM = t/g DCM (c.g.c) (đpcm)

b) t/g ABM = t/g DCM (câu a)

=> ABM = DCM (2 góc tương ứng)

Mà ABM và DCM là 2 góc ở vj trí so le trong nên AB // DC (đpcm)

c) t/g AMC = t/g AMB (c.c.c)

=> AMC = AMB (2 góc tương ứng)

Mà AMC + AMB = 180o ( kề bù)

=> AMC = AMB = 90o

=> AM _|_ BC (đpcm)

d) AB // CD => BAD = ADC = 30o (so le trong)

Mà BAD = CAD do t/g AMB = t/g AMC (câu c)

=> BAD + CAD = 2.BAD = 2.30o = 60o

T/g ABC cân tại A, có BAC = 60o

=> t/g BAC đều

9 tháng 1 2019

A B C M D

CM : a) Xét tam giác ABM và tam giác DCM

Có BM = CM (gt)

  góc AMB = góc CMD (đối đỉnh)

MA = MD (gt)

=> tam giác ABM = tam giác DCM (c.g.c)

b) Ta có: tam giác ABM = tam giác DCM (cmt)

=> góc B = góc MCD (hai góc tương ứng)

Mà góc B và góc MCD ở vị trí so le trong

=> AB // DC

c) Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

BM = CM (gt)

 AM : chung

=> tam giác ABM = tam giác ACM (c.c.c)

=> góc BMA = góc CMA (hai góc tương ứng)

Mà góc BMA + góc CMA = 1800 (kề bù)

hay 2\(\widehat{BMA}\)= 1800

=> góc BMA = 1800 : 2

=> góc BMA = 900

=> AM \(\perp\)BC

d) Để góc ADC = 450

<=> tam giác ABC cân tại A