Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE
.Vì E là trung điểm BC, E là trung điểm AD
→ΔAEB=ΔDEC(c.g.c)→ΔAEB=ΔDEC(c.g.c)
b.Tương tự ta có thể chứng minh ΔAEC=ΔDEB(c.g.c)ΔAEC=ΔDEB(c.g.c)
→ˆEAC=ˆEDB→AC//BD→EAC^=EDB^→AC//BD
c.Vì
⎧⎪⎨⎪⎩ˆEAC=ˆEDB(câub)AE=DEˆAIE=ˆEKD=90o{EAC^=EDB^(câub)AE=DEAIE^=EKD^=90o
→ΔAIE=ΔDKE(g.c.g)→ΔAIE=ΔDKE(g.c.g)
d.Từ câu c
→ˆAEI=ˆKED→AEI^=KED^
→ˆKEI=ˆKED+ˆDEI=ˆAEI+ˆDEI=ˆAED=180o→KEI^=KED^+DEI^=AEI^+DEI^=AED^=180o
→K,E,I→K,E,I thẳng hàng
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
c: Xét ΔBAC vuông tại B có
\(\sin C=\dfrac{AB}{AC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{BAC}=60^0\)
a: Xét ΔABI vuông tại I và ΔKBI vuông tại I có
IB chung
IA=IK
Do đó: ΔABI=ΔKBI
b: Xét ΔABE và ΔFCE có
EA=EF
\(\widehat{AEB}=\widehat{FEC}\)
EB=EC
Do đó: ΔABE=ΔFCE
c: Ta có: ΔABE=ΔFCE
nên AB=FC
mà AB=BK
nên FC=BK
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC