Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ...
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
AB = AC ( giả thiết )
AM: Cạnh chung
AM = BM ( Vì M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\) (đpcm)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng)
Ma lại có: \(\widehat{AMB}+\widehat{AMC}=180\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{180}{2}=90^o\)
=> AM vuông góc với BC
b) Vì \(CE\perp AB\) và \(AM\perp BC\)
=> EC // AM ( Từ vuông góc đến song song )
c) Vì tam giác ABC vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^o\)
\(\Rightarrow\widehat{ACE}=90^o-45^0=45^0\)
Xét \(\Delta ACE\) và \(\Delta ACE\) , có:
\(\widehat{ACE}=\widehat{ACB}=45^0\)
\(\widehat{CAE}=\widehat{BAC}=90^0\)
AC: Cạnh chung
=> \(\Delta ACE=\Delta ACB\left(g.c.g\right)\)
=> CE = CB (hai cạnh tương ứng)
hình thì bạn tự vẽ nha !
a) xét ΔAMB và ΔAMC, ta có :
AB = AC (gt)
MB = MC (vì M là trung điểm của cạnh BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
⇒ AM vuông góc với BC
c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
xét ΔAHM và ΔAKM, ta có :
AM là cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (cmt)
⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)
⇒ HA = KA (2 cạnh tương ứng)
HB không thể nào bằng AC được nha, có thể đề sai
d) vì HA = KA nên ⇒ ΔHAK là tam giác cân
trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\) (1)
trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\) (2)
từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC
A B C M GT ∆ABC(AB = AC) M là trung điểm của BC H MH∟AB tại H MK∟AC tại∟K KL a)∆AMB = ∆AMC b)AM∟BC c)HA = KA; HB = KC d)HK song song với BC K X X
Chứng minh:
a) Xét hai ∆AMB và ∆AMC có:
AB = AC (GT)
MB = MB (M là trung điểm của BC)
AM là cạnh chung
Vậy ∆AMB = ∆AMC(c.c.c)
b) Có ∆AMB = ∆AMC(theo a)
⇒ Góc AMB = Góc AMC(2 góc tương ứng)
mà góc AMB + AMC = 180° (2 góc kề bù)
⇒ Góc AMB = Góc AMC = 90°
⇒ AM ∟ BC
c) ΔABC có:
AB = AC(GT)
⇒ ΔABC cân tại A
⇒ Góc B = Góc C
Có MH∟AB tại H ⇒ Góc MHB = 90°
Có MK∟AC tại K ⇒ Góc MKC = 90°
Xét hai ΔBHM và ΔCKM có:
Góc B = Góc C(ΔABC cân tại A)
MB = MC(M là trung điểm của BC)
Góc MHB = Góc MKC = 90°
Vậy ΔBHM = ΔCKM(g.c.g)
⇒ HB = KC(2 cạnh tương ứng)
Có HB + HA = AB
⇒ HA = AB - HB
Có KC + KA = AC
⇒ KA = AC - KC
mà AB = AC(GT)
HB = KC(2 cạnh tương ứng)
⇒ HA = KA (2 cạnh tương ứng)
1. Xét hai tam giác vuông ΔABHΔABH và ΔACHΔACH có:
AHAH cạnh chung
AB=AC=10cmAB=AC=10cm (gt)
Vậy ΔABH=ΔACHΔABH=ΔACH (cạnh huyền- cạnh góc vuông)
HC=HBHC=HB (hai cạnh tương ứng) hay H là trung điểm BC
2. BH=HC=BC2=122=6BH=HC=BC2=122=6 cm
Áp dụng định lí Py-ta-go vào ΔΔ vuông ABHABH có:
AH2=AB2−HB2=102−62=64⇒AH=8AH2=AB2−HB2=102−62=64⇒AH=8 cm
3. Xét ΔAKEΔAKE và ΔAKHΔAKH có:
AKAK chung
ˆAKE=ˆAKH=90oAKE^=AKH^=90o (do HK⊥ACHK⊥AC)
KE=KHKE=KH (do giả thiết cho K là trung điểm của HE)
⇒ΔAKE=ΔAKH⇒ΔAKE=ΔAKH (c.g.c)
⇒AE=AH⇒AE=AH (hai cạnh tương ứng) (1)
Cách khác để chứng minh AE=AH
Do ΔAHEΔAHE có K là trung điểm của HE nên AK là đường trung tuyến,
Có HK⊥ACHK⊥AC hay AK⊥HEAK⊥HE nên AK là đường cao
ΔAHEΔAHE có AK là đường trung tuyến cũng là đường cao nên ΔAHEΔAHE cân đỉnh A nên AE=AH.
4. Ta có HI⊥ABHI⊥AB hay AI⊥DH⇒AI⊥DH⇒ AI là đường cao của ΔADHΔADH
Mà IH=ID nên AI cũng là đường trung tuyến ΔADHΔADH
Vậy ΔAEHΔAEH cân tại A
Nên AD=AH (2)
Từ (1) và (2) suy ra AE=AD hay ΔAEDΔAED cân tại A.
5. Xét 2 tam giác vuông ΔAHIΔAHI và ΔAHKΔAHK có:
AH chung
ˆIAH=ˆKAHIAH^=KAH^ (hai góc tương ứng của ΔABH=ΔACHΔABH=ΔACH)
⇒ΔAHI=ΔAHK⇒ΔAHI=ΔAHK (cạnh huyền- góc nhọn)
⇒HI=HK⇒2HI=2HK⇒HD=HE⇒HI=HK⇒2HI=2HK⇒HD=HE
Mà ta có AD=AEAD=AE (cmt)
⇒AH⇒AH là đường trung trực của DE⇒AH⊥DEDE⇒AH⊥DE mà AH⊥BCAH⊥BC
⇒DE//BC⇒DE//BC
6. Để A là trung điểm ED thì DA⊥AHDA⊥AH mà ΔADHΔADH cân (cmt) nên ΔADHΔADH vuông cân đỉnh A.
Có AIAI là đường cao, đường trung tuyến nên AIAI cũng là đường phân giác nên
ˆDAI=ˆHAI=90o2=45oDAI^=HAI^=90o2=45o
⇒ˆIAH=ˆBAH=ˆCAH=45o⇒IAH^=BAH^=CAH^=45o (do ΔABH=ΔACHΔABH=ΔACH)
⇒ˆBAC=ˆBAH+ˆCAH=90o⇒BAC^=BAH^+CAH^=90o và ΔABCΔABC cân đỉnh A
⇒ΔABC⇒ΔABC vuông cân đỉnh A.
Vậy nếu ΔABCΔABC vuông cân đỉnh A thì AA là trung điểm của DE.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
A B C M
\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (giả thiết)
\(AM\) là cạnh chung
\(BM=CM\) (giả thiết)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)
\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)
\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))
\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)
\(\Rightarrow AM\perp BC\) tại \(M\)
A B C M
tam giác ABC cân tại A (AB = AC) có đường cao AM (AM vuông góc với BC tại M)
=> AM đồng thời là đường cao, đồng thời là đường trung tuyến của tam giác ABC cân tại A
=> M là trung điểm BC.