Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: AD + BD = AB => AD + 2 = 8 => AD = 6 (cm)
và AE + EC = AC => AE + 13 = 16 => AE = 3 (cm)
Xét △AEB và △ADC
Có: \(\frac{AE}{AD}=\frac{AB}{AC}\) \(\left(=\frac{3}{6}=\frac{8}{16}=\frac{1}{2}\right)\)(cm)
∠BAE là góc chung
=> △AEB ᔕ △ADC (c.g.c)
b, Ta có: \(\frac{AE}{AD}=\frac{AB}{AC}\)\(\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}\)
Xét △ADE và △ACB
Có: \(\frac{AE}{AB}=\frac{AD}{AC}\)
∠DAE là góc chung
=> △ADE ᔕ △ACB (c.g.c)
=> ∠AED = ∠ABC
c, Ta có: \(\frac{AE}{AB}=\frac{AD}{AC}\) => AE . AC = AD . AB
c) Ta có AE=AC-EC(vì E thuộc AC)
mà AC=16, EC=13(gt)
=>AE=16-13=3(cm)
Ta có: AD=AB-BD(D thuộc AB)
mà AB=8, BD=2(gt)
=>AD=8-2=6(cm)
Có: AE.AC=3.16=48
AD.AB=6.8=48
a+b)Có AE.AC=AD.AB(cmt)
=>AE/AB=AD?AC(tính chất tỉ lệ thức)
Xét tam giác AED và tam giác ABC có: góc A chung
AE/AB=AD/AC(cmt)
=>tam giác AED đồng dạng tam giác ABC(cgc)
=>góc AED=góc B(2 góc tương ứng)
a) Ta có: AD=AB-DB=8cm-2cm
⇒AD=6cm
AE=AC-EC=16cm-3cm
⇒AE=3cm
Xét △AEB và △ADC ta có:
góc A chung
AE/AD=3/6=1/2
AB/AC=8/16=1/2
⇒AE/AD=AB/AC=1/2
⇒△AEB đồng dạng với △ADC
ta có :AD =AB -DB = 8cm -2cm
=> AB=6cm
AE =AC -EC = 16cm -3cm
=> AE=13cm
xét tam giác AEB và tam giác ADC co
 = chung
AE/AD =3/6=1/2
AB/AC=8/16=1/2
=> AE/AD=AB/AC=1/2
=>tam giác AEB đồng dạng tam giác ADC
a) Ta có: AB-DB=AD=> AD=8-2=6cm
AC-EC=AE=16cm-13cm=AE=>AE=3cm
Xét △AEB và △ADC có góc A chung
AE:AD=3:6=1:2
AB:AC=8:16=1:2
=>AE:AD=AB:AC=1:2
=>△AEB đồng dạng với △ADC
b) Ta có: AE/AD=AB/AC(cmt)=>AE/AB=AD/AC
Xét △AED và △ABC có:
EAD=BAC
AE/AB=AD/AC
=> AED=ABC .
#muon roi ma sao con
A B C D F E G
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
A B C D E F H 3 6
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)