K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2022

a) ta có: AB2 + AC2 = 100; BC2 = 100 => AB2 + AC2 = BC2

a) ta có: AB2 + AC2 = 100; BC2 = 100 => AB2 + AC2 = BC2

=> △ABC vuông tại A (theo định lý Py-ta-go)

b) ta có MK là tia đối của MH; MK = MH mà MH lại vuông góc với tia AC => MK vuông góc với tia BK

Ta có KH vuông góc với AH; BA vuông góc với HA; HK vuông góc với BK => ABKH là 1 hình chữ nhật => BK // AH => BK // AC (vì H ϵ AC)

c) xét △BKM và △AHM có:

     góc BKM = Góc AHM = 90o (vì ABKH là HCN)

     KB = HA (vì ABKH là HCN)

     MK = MH (theo GT)

=> △BKM = △AHM (2 cạnh góc vuông)

=> BM = AM (2 cạnh tương ứng)

có AM = BM mà BM = CM => AM = CM

xét △AMH và △CMH có

     góc AHM = góc CHM = 90o (theo GT)

     AM = CM (theo c/m trên)

     MH: cạnh chung

=> △AMH = △CMH (cạnh huyền - cạnh góc vuông)

=> AH = CH => H là trung điểm của AC

Vì M là trung điểm của BC nên AM là 1 đường trung tuyến; Vì H là trung điểm của AC nên BH là 1 đường trung tuyến => giao của BH và AM hay điểm G là trọng tâm của △ABC

Vì M là trung điểm của BC nên AM là 1 đường trung tuyến; Vì H là trung điểm của AC nên BH là 1 đường trung tuyến => giao của BH và AM hay điểm G là trọng tâm của △ABC

13 tháng 12 2016

bạn ghi lại đề câu a với đề sai rồi ạ

20 tháng 2 2023

Vì AM là đường trung tuyến

=> BM=CM

Xét ∆BMK và ∆CMH có:

MH=MK(gt)

\(\widehat{BMK}=\widehat{CMH}\)(đối đỉnh)

BM=CM(gt)

=> ∆BMK=∆CMH(c.g.c)

=> \(\widehat{BKM}=\widehat{CHM}=90^o\)

Ta có: BK⊥MK; CH⊥MK

=> BK//CH hay BK//AC

Áp dụng tính chất đường trung tuyến trong tam giác vuông

=> AM=BM=CM

=> ∆AMC cân tại M

mà MH là đường cao 

=> MH đồng thời là đường trung tuyến

=> H là trung điểm AC => BH là đường trung tuyến

Xét ∆ABC có: 2 đường trung tuyến AM và BH cắt nhau tại I

=> I là trọng tâm ∆ABC

1 tháng 5 2016

a) xét tam giác ABC vuông tại A ta có

BC2=AB2+AC2 (pitago)

152=92+AC2

AC2=152-92

AC  =12

b) xét tam giac MHC và tam giac  MKB ta có

MC=MB ( AM là đường trung tuyến )

MH=MK(gt)

góc CMH= góc BMK ( 2 góc đối đỉnh)

-> tam giác MHC= tam giac MKB (c-g-c)

_> góc MHC= góc MKB (2 góc tương ứng)

mà 2 góc nằm ở vị trí sole trong 

nên BK//AC

b) ta có góc MHC= góc MKB (cmt)

          góc MHC =90 (MH vuông góc AC)

-> góc MKB =90

Xét tam giác ABH vuông tại A và tam giác BKM vuông tại K ta có

BH=BH (cạnh chung)

góc AHB= góc HBK ( 2 góc so le trong và BK//AC)

-> tam giac ABH = tam giac KHM (ch-gn)

-> AH=BK (2 cạnh tương ứng)

mà BK = HC ( tam giác HMC= tam giác KMB)

nên AH=HC

-> H là trung điểm AC

Xét tam giac ABC ta có

BH là đường trung tuyến ( H là trung điểm AC)

AM là dường trung tuyến (gt)

BH cắt AM tai G (gt)

-> G là trọng tâm tam giác ABC