K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PT
1
31 tháng 1 2018
a)
Ta có: AE/AB = 6/18 = 1/3
AD/AC = (18:2)/27 = 9/27 = 1/3
Xét ∆AED và ∆ABC có:
Chung góc BAC
AD/AC = AE/AB( = 1/3 )
Suy ra : ∆AED đồng dạng với∆ABC ( đpcm )
b)
Do hai tam giác trên đông dang nên ED/BC = AE/AB = AD/AC
Suy ra ED/BC = 1/3
Suy ra ED/30 = 1/3
Suy ra ED= 10cm
Vẽ tia phân giác của B^ cắt AC tại D, ta có:
\(\dfrac{AB}{BC}\)=\(\dfrac{AD}{DC}\)
⇒\(\dfrac 45\)=\(\dfrac{AD}{DC}\) ⇒\(\dfrac{DC}{5}\)=\(\dfrac{AD}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ⇒\(\dfrac{DC}{4}\)=\(\dfrac{AD}{4}\)=\(\dfrac{DC+AD}{4+5}\)=\(\dfrac 69\)=\(\dfrac 23\)⇒DC= 5.\(\dfrac 23\) =\(\dfrac{10}{3}\) ; AD= 4.\(\dfrac23\) =\(\dfrac 83\)
Xét △ADB và △ABC, có:
\(\dfrac{AD}{AB}\)=\(\dfrac 83\): 4 = \(\dfrac 23\) ; \(\dfrac{AB}{AC}\) =\(\dfrac 46\) =\(\dfrac 23\) ⇒\(\dfrac{AD}{AB}\)=\(\dfrac{AB}{AC}\) (1)
A^ chung
Từ (1), (2) ⇒△ADB đồng dạng △ABC (c.g.c) ➩△ABD = C mà ABC^ = 2B^ ➩ABC^=2C^