\(\frac{b+c}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

bạn kéo dài tia AM và lấy H sao cho AM=HM 

bạn xét tam giác AMB= tam giác CMH =>AB=CH

xét tam giác ACH coa AH<AC +CH=> AH<AC+AB =>AH/2<AC+AB/2=>AM<b+c/2

16 tháng 4 2018

A B C M N c b

Trên tia đối AM lấy N sao cho AM = MN

Xét tam giác BMN và tam giác AMC

Ta có: NM= MA (gt)

\(B\widehat{M}N=A\widehat{MC}\)(đối đỉnh)

BM = MC (M là trung điểm BC)

=> tam giác BMN = tam giác CMA (c-g-c)

=> BN = AC ; MN = MA (tương ứng)

=> NA = 2MA

Trong tam giác ABN, ta có: 

AN < AB + BN (bất đẳng thức)

hay 2MA < AB + AC

MA < (AB+AC)/2

Vậy \(MA< \frac{c+b}{2}\)

A B C D M c b

Trên tia đối của tia MA lấy điểm D sao cho MD=MA

Xét \(\Delta AMB\)và \(\Delta DMC\):

MB=MC(gt)

\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)

BM=CM(gt)

=> \(\Delta AMB=\Delta DMC\left(c.-g-c\right)\)

=> DC=AB=c

Xét \(\Delta ACD\)có: AD<AC+DC

=> 2AM<b+c

=> \(AM< \frac{b+c}{2}\)

=> Đpcm

P/s:Phần này là phần BĐT tam giác ý, dễ mà:>

28 tháng 4 2019

A B C M D

Trên tia đối của tia AM lấy điểm D sao cho AM=MD

Xét tam giác AMB VÀ TAM GIÁC DMC có

MB=MC(gt)

AM=MD(cách dựng)

\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)

\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)

\(\Rightarrow\)AB=CD(2 cạnh tương ứng)

Xét tam giác ACD có

AD<CD+AC(bất đẳng thức tam giác)

\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)

Mà AD=AM+MD=2AM

\(\Rightarrow2AM< AB+AC\)

\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)

28 tháng 4 2019

Kẻ đoạn thẳng AM

Trên tia AM lấy điểm K sao cho M là trung điểm của AK

=> MA = MK = AK/2 => 2AM = AK

M là trung điểm của BC ( gt ) => MB = MC

Xét tam giác AMB và tam giác KMC có :

MA = MK ( cmt )

AMB = KMC ( đối đỉnh )

MB = MC ( cmt )

Do đó tam giác AMB = tam giác KMC ( c . g . c )

=> AB = CK ( 2 cạnh tương ứng )

CÓ AK < AC + CK ( bất đẳng thức trong tam giác )

hay 2AM < AC + AB

=> AM < \(\frac{AC+AB}{2}\)( dpcm )

Vậy ...

18 tháng 4 2019

1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)

\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)

\(=\frac{9}{16}+\frac{7}{16}\)

=1

18 tháng 4 2019

chị giúp em hai bài cuối đi

24 tháng 3 2020

a) (Nếu cj biết vẽ hình rồi thì thôi nha chị, còn nếu chị chưa vẽ được hình thì chị có thể nhắn tin với em ạ )

Ta có : tam giác ABE và tam giác ADC có : 

AB = AD

AC=AE

góc DAC  = góc BAE  ( cũng = góc BAC t60 độ ) 

=> tam giác ABE  = tam giác ADC ( c . g . c ) 

=> góc AEB  = góc ACD ( 2 góc tương ứng) ; BE = CD

Gọi F là tia đối tia BI sao cho DI=IF

=> tam giác DIF đều do góc DIB = 60 độ

Xét tam giác DBF  và tam giác DAI có : 

DF = DI , DB = DA  , góc FDB = góc IDA = 60 độ - góc BDI 

Vậy ta có : ID = IF = IB + FB = IB + IA ( đpcm )

b) Ta có : AM2 = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)

Áp dụng định lí cosin trong tam giác ABM ta có : 

AM2 =BA2 + BM2 -2.BA . BM .cos B

       = AB2 + BM2 -2.AB . BM . \(\frac{AB^2+BC^2-AC^2}{2.AB.BC}\)

        = AB2 + \(\frac{BC^2}{4}-2.BM.\frac{AB^2+BC^2-AC^2}{2.2.BM}\)

       = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)

<=> AB2 + AC2 =2.AM2 + \(\frac{BC^2}{2}\)

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
9 tháng 4 2020

a) Xét ΔABM và ΔDCM ta có:

AM = MD (GT)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

BM = CM (GT)

=> ΔABM = ΔDCM (c - g - c)

=> AB = CD (2 cạnh tương ứng)

Và: \(\widehat{BAM}=\widehat{MDC}\) (2 góc tương ứng)

Mà: 2 góc này lại là 2 góc so le trong

=> AB // CD

b) Có: AB // CD (câu a)

=> \(\widehat{BAC}=\widehat{DCA}\) (đồng vị)

Xét ΔABC và ΔCDA ta có:

AB = CD (câu a)

\(\widehat{BAC}=\widehat{DCA}\) (cmt)

AC: cạnh chung

=> ΔABC = ΔCDA (c - g - c)

=> BC = AD (2 cạnh tương ứng) (1)

Có: AM = DM (GT)

=> M là trung điểm của AD

=> \(AM=\frac{AD}{2}\) (2)

Từ (1) và (2) => \(AM=\frac{BC}{2}\)

c) Có: \(\widehat{BAC}+\widehat{BAE}=180^0\) (kề bù)

=> \(\widehat{BAE}=180^0-\widehat{BAC}=180^0-90^0=90^0\)

Có: AB // CD (câu a)

=> \(\widehat{BAD}=\widehat{CAD}\) (so le trong)

Xét ΔAMC và ΔDMB ta có:

AB = CD (câu a)

\(\widehat{BAD}=\widehat{CAD}\) (cmt)

AD: cạnh chung

=> ΔAMC = ΔDMB (c - g - c)

=> AC = BD (2 cạnh tương ứng)

Và: \(\widehat{ACD}=\widehat{ABD}\) (2 góc tương ứng) (1)

Có: ΔABC = ΔCDA (câu b)

=> \(\widehat{BAC}=\widehat{ACD}\) (2 góc tương ứng)

Mà: \(\widehat{BAC}=90^0\)

=> \(\widehat{ACD}=90^0\) (2)

Từ (1) và (2) => \(\widehat{ABD}=90^0\)

Có: AC = BD (cmt)

Lại có: AC = AE (GT)

=> BD = AE

Xét ΔABE và ΔBAD ta có:

BD = AE (cmt)

\(\widehat{ABD}=\widehat{EAB}\left(=90^0\right)\)

AB: canh chung

=> ΔABE = ΔBAD (c - g - c)

=> \(\widehat{EBA}=\widehat{BAD}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc so le trong nên

EB // AD

Hay: EB // AM

P/s: Gõ mỏi tay quá!

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2