Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
2) Ta có: ΔABD=ΔAED(cmt)
nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)(cmt)
nên \(\widehat{KBD}=\widehat{CED}\)
Xét ΔDBK và ΔDEC có
\(\widehat{KBD}=\widehat{CED}\)(cmt)
BD=ED(cmt)
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDBK=ΔDEC(g-c-g)
3) Ta có: ΔDBK=ΔDEC(cmt)
nên BK=EC(hai cạnh tương ứng)
Ta có: AB+BK=AK(B nằm giữa A và K)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(gt)
và BK=EC(cmt)
nên AK=AC
Xét ΔAKC có AK=AC(cmt)
nên ΔAKC cân tại A(Định nghĩa tam giác cân)
Lười đánh máy thật sự:vvv
a) Xét ∆ABD và ∆AED:
AD: cạnh chung
AB=AE(gt)
\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)
=> ∆ABD=∆AED (c.g.c)
=> BD=DC
b) Theo câu a: ∆ABD=∆AED
=> \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)
\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)
Xét ∆DBK và ∆DEC:
BD=ED(cm ở a)
\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)
\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)
=> ∆DBK=∆DEC (g.c.g)
c) Gọi giao điểm của AD và BE là I
Xét ∆BAI và ∆EAI:
AB=AE(gt)
\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)
AI: cạnh chung
=> ∆BAI=∆EAI (c.g.c)
=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)
Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)
=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)
Từ (1) và (2) suy ra AD là trung trực của BE.
a) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AE chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
b/ Xét 2 TG ABC và TG AEK,ta có:
A chung
E=B (2 TG = nhau câu a)
AB=AE (gt)
=>TG ABC=TG AEK (g-c-g)
=>AK=AC (cặp cạnh tương ứng)
Ta có :AK=AB+AC
AC=AE+EC
Mà AC=Ak
AB=AE
=>BK=EC
Xét 2 TG DBK và TG DEC,ta có:
BK=EC(cmt)
Góc BDK = góc EDC (đối đỉnh)
BD=ED(câu a)
=>TG DBK=TG DEC (c-g-c)
c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A
Cho tam giac ABC có AB < AC; AD là phân giác của goc A. Trên cạnh AC lấy điểm E sao cho AB = AE.
a. Chứng minh tam giac ABD = tam giac AED
b. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh tam giac FBD = tam giac CED và DF = DC
c. Chứng minh AD vuong goc voi CE d. Chứng minh BE // CF.
( giup minh voi cac ban oi )
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
Để DE\(\perp\)AC thì \(\widehat{AED}=90^0\)
=>\(\widehat{ABD}=\widehat{ABC}=90^0\)
c: Xét ΔAEK và ΔABC có
\(\widehat{AEK}=\widehat{ABC}\)
AE=AB
\(\widehat{KAE}\) chung
Do đó: ΔAEK=ΔABC
d: Ta có: ΔAEK=ΔABC
=>EK=BC và AK=AC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE và AK=AC
nên BK=EC
Ta có: DE+DK=EK
DB+DC=BC
mà EK=BC và DE=DB
nên DK=DC
Xét ΔKBE và ΔCEB có
KB=CE
BE chung
KE=CB
Do đó:ΔKBE=ΔCEB
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBK}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{DBK}=\widehat{CED}\)
Xét ΔDBK và ΔDEC có
\(\widehat{DBK}=\widehat{DEC}\)
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDBK=ΔDEC