Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE có
AD vừa là đường cao, vừa là trung tuyến
=>ΔABE cân tại A
b: Gọi M là giao của AD và FE
Xét ΔAME có
ED,AF là đường cao
ED cắt AF tại C
=>C là trực tâm
=>M,C,K thẳng hàng
=>ĐPCM
xét tam giác ABE và tam giác ACF có :
góc AEB = góc AFC = 90 do ...
góc CAB chung
=> tam giác ABE ~ tam giác ACF (g.g)
=> AB/AC = AE/AF
=> AB.AF = AC.AE
a: Xét ΔAEB có
AD vừa là đường cao, vừa là trung tuyến
=>ΔAEB cân tại A
b: Gọi giao của FC và AD là G
Xét ΔAGC có
AF,CD là đường cao
AF cắt CD tại E
=>E là trực tâm
=>GE vuông góc AC
=>G,E,F thẳng hàng
=>AD,EF,CK đồng quy
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(Cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng) và EC=EK(hai cạnh tương ứng)
Ta có: AC=AK(cmt)
nên A nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EC=EK(cmt)
nên E nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
hay AE⊥CK(đpcm)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)
\(\Leftrightarrow\widehat{EBA}=90^0-60^0=30^0\)(3)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAB}=\widehat{EBA}\)
Xét ΔEBA có \(\widehat{EAB}=\widehat{EBA}\)(cmt)
nên ΔEBA cân tại E(Định lí đảo của tam giác cân)
Xét ΔEKA vuông tại K và ΔEKB vuông tại K có
EA=EB(ΔEBA cân tại E)
EK chung
DO đó: ΔEKA=ΔEKB(cạnh huyền-cạnh góc vuông)
Suy ra: KA=KB(hai cạnh tương ứng)
c) Ta có: ΔEKB vuông tại K(gt)
nên EB là cạnh lớn nhất(EB là cạnh huyền)
hay EB>EK
mà EK=EC(cmt)
nên EB>EC(đpcm)
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a: Xét ΔABK và ΔEBK có
BA=BE
\(\widehat{ABK}=\widehat{EBK}\)
BK chung
Do đó: ΔABK=ΔEBK
Suy ra: KA=KE
Bạn ơi giúp mình giải hết bài này đc ko
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt AC tại K.
a) So sánh AK và KE.
b) Chứng minh EK vuông góc BC.
c) Chứng minh: BK là đường trung trực của đoạn thẳng AE
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
a: Xét ΔABC có AB>AC
mà EB,EC lần lượt là hình chiếu của AB,AC trên BC
nên EB>EC
Xét ΔKBC có EB>EC
mà EB,EC lần lượt là hình chiếu của KB,KC trên BC
nên KB>KC
b: góc BKE<90 độ
=>góc BKA>90 độ
=>BA>BK
Ko có hình à