Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BID và tam giác CIE có:
BI=CI ( vì I là trung điểm của cạnh BC)
góc I1=góc I2 (2 góc đối đỉnh)
ID=IE ( I là trung điểm của canh DE)
=> tam giác BID=tam giác CIE (c.g.c)
=> BD=CE (đpcm)
b) Theo câu a) tam giác BID=tam giác CIE
=> góc B=góc C2
Lại có : góc B=góc C1 (gt)
=> góc C1=góc C2 hay CB là tia phân giác của góc ACE
- - Giải:
- a)
- Xét tam giác DIB và tam giác CIE có:
- Góc DIB = Góc CIE ( 2 góc đối đỉnh )
- BI = IC (Gỉa thiết )
- DI = IE( Gỉa thiết )
- => Vậy tam giác DIB = tam giác CIE
- ( c . g . c )
- => BD = CE ( 2 cạnh tương ứng )
- Câu b)
- Theo câu a), Tam giác DIB = Tam giác CIE
- => Góc DBI = Góc ICE ( 2 góc tương ứng )
- Mà góc ACB = góc ABC
- => Góc ACB = Góc ICE
- => CB là tia phân giác của góc ACE
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
Ta có hình vẽ:
A B C M D E F
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng