\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

Tam giác ABC cân tại A nên ABC = ACB =\(90-\frac{BAC}{2}=90-\frac{70}{2}=90-35=55\)độ

BM, CM lần lượt là phân giác của góc B, góc C nên CBM = BCM =\(\frac{1}{2}ABC\left(=\frac{1}{2}ACB\right)\)\(\frac{55}{2}\)độ 

Tam giác BCM có: BCM + CBM + BMC = 180 độ \(\Rightarrow\)\(2\times\frac{55}{2}\)+ BMC = 180 độ

Góc BMC = 180 -55= 125 độ

24 tháng 10 2018

A B C K I 1 2 1 2 3 4

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)

\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)

Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)

\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)

Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)

14 tháng 3 2018

a) Xét tam giác ABC có 
(góc) A+B+C=180o(định lí tổng 3 góc của 1 tam giác)
hay  60o+ABC+ACB=180o
    (góc)   ABC+ACB=180o-60o=120o
Ta có BD là tia phân giác của góc ABC,CE là tia phân giác của góc ACB
=> (góc) DBC+DCB=ABC + ACB /2=120o-60o=60o

Xét tam giác DBC có
(góc)         BDC+ DBC+DCB=180o(Định lí tổng 3 góc của một tam giác)
hay (góc)  BDC+60o=180o
        (góc) BDC          =180o-60o=120o
:3

câu b đâu òi

Xét tam giác ABC có :

A + ABC + ACB = 180 *

=> ABC + ACB = 180* - a

Mà BC là phân giác ABC 

=> ABD = CBD = \(\frac{1}{2}ABC\)

Mà CE là phân giác ACB 

=> ACE = BCE = \(\frac{ACB}{2}\)

=> ECB + DBC = \(\frac{ACB+ABC}{2}\)\(\frac{180-a}{2}\)

Xét tam giác OBC có : 

OBC + OCB + BOC = 180* 

=> BOC = 180* - ( OBC + OCB)

=> BOC = 180* - \(\frac{180-a}{2}\)

=> BOC =\(\frac{a}{2}\)(dpcm)