K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

a) Xét \(\Delta ABI\)\(\Delta ADI\) có:

AB = AD (gt)

\(\widehat{BAI}=\widehat{DAI}\)

AI là cạnh chung

Suy ra: \(\Delta ABI\) = \(\Delta ADI\)(c - g - c)

=> BI = ID

b) Ta có: \(\widehat{BEI}=\widehat{DIC}\) (đđ); \(\widehat{AIB}=\widehat{AID}\left(\Delta ABI=\Delta ADI\right)\)

=> \(\widehat{BEI}+\widehat{AIB}=\widehat{DIC}+\widehat{AID}\Rightarrow\widehat{EIA}=\widehat{CIA}\)

Xét \(\Delta AIE\)\(\Delta AIC\) có:

\(\widehat{BAI}=\widehat{CAI}\) ( AI là tia phân giác của \(\widehat{A}\))

AI là cạnh chung

\(\widehat{EIA}=\widehat{CIA}\) (cmt)

Suy ra: \(\Delta AIE\) = \(\Delta AIC\)(g - c - g)

=> EI = IC(2 cạnh tương ứng)

\(\widehat{BEI}=\widehat{ICD}\) (2 góc tương ứng)

Xét \(\Delta IBE\)\(\Delta IDE\) có:

\(\widehat{BIE}=\widehat{DIC}\) (đđ)

EI = IC

\(\widehat{BEI}=\widehat{ICD}\)(cmt)

Suy ra: \(\Delta IBE\)\(\Delta IDE\) (g - c - g)

29 tháng 12 2017

c.

\(\Delta IBE=\Delta IDC\left(cmt\right)\\ \Rightarrow BE=DC\\ \Rightarrow BE+AB=DC+AC\\ \Rightarrow AE=AC\)

=> Tam giác AEC cân tại A

\(\Rightarrow\widehat{AEC}=\dfrac{180^0-\widehat{BAC}}{2}\)

TT :

\(\widehat{ABD}=\dfrac{180^0-\widehat{BAC}}{2}\\ \Rightarrow\widehat{ABD}=\widehat{AEC}\)

=> BD // EC

30 tháng 12 2017

giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho
 

30 tháng 12 2017
  • xét tam giác BAI và DAI
    ai cạnh chung
    bai= dai ( ai phân giác BAC)
    ab=ad ( gt )
    => tam giác bai= dai ( C.G.C)
    =>bi= di ( C.C.T.Ư )
    B) Tam giác bai = dai
    =>iba = ida ( c.g.t.ư)
     ta có :
    góc abi+ ibe = 180 ( 2 GÓC KỀ BÙ )
    ADI+ IDC= 180 ( 2 GÓC KỀ BÙ )
    Mà ABI = adi ( CMT)
    = > ibe = idc
    xét tam giác ibe và tam giác idc
    ib= id (GT)
     IBE= IDC (CMT)
    BIE= DIC ( 2 góc đối đỉnh)
    => Tam giác ibe= idc ( g.c.g)
    C) ta có bde= dec ( 2 góc sole trong)
    xét tam giác bde và dec
    be= dc ( TAM GIÁC BEI= DIC)
    de chung
    bde = dec (cmt)
    => tam giác bde = ced (c.g.c)
    => deb= cde (c.g,t.ư )
    MÀ  góc deb và cde là 2 góc ở vị trí sole trong nên 
    => bd song song ec

    TỰ VẼ HÌNH
    NHỚ K CHO MÌNH NHA MÌNH CAMON, CÓ GÌ CHƯA HIỂU THÌ VÀO NHẮN TIN

a: Xét ΔABI và ΔADI có

AB=AD
\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

=>\(\widehat{BIA}=\widehat{DIA}\)

=>IA là phân giác của góc BID

b: Ta có: ΔABI=ΔADI

=>\(\widehat{ABI}=\widehat{ADI}\) và IB=ID

Ta có: \(\widehat{ABI}+\widehat{IBE}=180^0\)(hai góc kề bù)

\(\widehat{ADI}+\widehat{CDI}=180^0\)(hai góc kề bù)

mà \(\widehat{ABI}=\widehat{ADI}\)

nên \(\widehat{IBE}=\widehat{CDI}\)

Xét ΔIBE và ΔIDC có

\(\widehat{IBE}=\widehat{IDC}\)

IB=ID

\(\widehat{BIE}=\widehat{DIC}\)(hai góc đối đỉnh)

Do đó: ΔIBE=ΔIDC

=>BE=DC

Xét ΔAEC có \(\dfrac{AB}{BE}=\dfrac{AD}{DC}\)

nên BD//CE
 

9 tháng 1 2019

- Ngu ít thôi =)

9 tháng 1 2019

A B C D I E

CM: a) Xét tam giác ABI và tam giác ADI

có AB = AD (gt)

góc BAI = góc IAD (gt)

AI : chung

=> tam giác ABI = tam giác ADI (c.g.c)

=> BI = ID (hai cạnh tương ứng)

b) Ta có: tam giác ABI = tam giác ADI (cmt)

=> góc ABI = góc ADI (hai góc tương ứng) (1)

Mà góc ABI + góc IBE = 1800 (2)

      góc ADI + góc IDC = 1800 (3)

Từ (1), (2),(3) suy ra góc IBE = góc IDC

Xét tam giác IBE và tam giác IDC

có góc EIB = góc DIC (đối đỉnh)

  IB = ID (cmt)

  góc IBE = góc IDC (cmt)

=> tam giác IBE = tam giác IDC

c,d tự làm

21 tháng 12 2021

a: Xét ΔABI và ΔADI có

AB=AD

\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

Suy ra: IB=ID

a: Xét ΔABI và ΔADI có

AB=AD

\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

Suy ra: IB=ID

b: Xét ΔIBE và ΔIDC có

\(\widehat{IBE}=\widehat{IDC}\)

IB=ID

\(\widehat{BIE}=\widehat{DIC}\)

DO đó: ΔIBE=ΔIDC

c: Xét ΔAEC có AB/BE=AD/DC

nên BD//EC

13 tháng 4 2023

Câu d

 

3 tháng 3 2020

tham hảo nha:

https://hoidap247.com/cau-hoi/24991

# mui #