K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M

Ta có : AB = AC => tam giác ABC cân tại A

Ta lại có :

 B = C ( do ABC cân )

AH chung

BM = MC ( gt )

=> AMB = AMC ( c- g - c )

b) Ta có ABC cân 

MÀ M là trung điểm của BC

=> AM là đường cao của ABC

=> AM vuông với BC

13 tháng 7 2016

A B C D E M .. ..

a)  Xét \(\Delta AMB\)và \(\Delta AMC\)có:

AB = AC (gt)

AM : cạnh chung (gt)

BM = CM (gt)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b) \(\Delta ABC\): có M là trung điểm BC => AM  là đường trụng trực của BC.

Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao. 

\(\Rightarrow AM\)vuông góc \(BC\)

c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

AC = AB  (gt)>
Góc A : góc chung (gt)

Do AB = AC(gt) : BD = CE (gt)

=> AB - BD = AC - CE 

=> AD = AE.

Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)

d) \(\Delta ABC\)cân có:

BD = CE

2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

12 tháng 7 2016

GIÚP MÌNH VS MN ƠI

CHỨNG MINH RẰNG 16 mũ 10 +32 chia hết cho 33

8 tháng 5 2016

??????

20 tháng 8 2016

bài này mình học

rùi nhưng ko nhớ

15 tháng 2 2016

B C A M N D E

a) Theo gt ta có : AB = AC

=> tam giác ABC cân tại A

=> góc B = góc C *

Xét tam giác ABD và tam giác ACE có :

+ AB = AC(gt)

+ góc B = góc C ( theo * )

+ BD = CE (gt)

=> tam giác ABD = tam giác ACE ( c . g .c )

=> AD = AE ( 2 cạnh tương ứng )

b) Ta có : DM vuông góc với BC, EN vuông góc với BC

=> tam giác MBD và tam giác NCE là tam giác vuông

Xét : tam giác vuông MBD ( góc D = 90\(^o\)) và tam giác vuông NCE ( góc E = 90\(^o\)) có :

+ BD = CE (gt)

+ góc B = góc C ( theo * )

=>  tam giác vuông MBD = tam giác vuông NCE ( cạnh góc vuông + góc nhọn )

c) theo CM ý b) ta có : tam giác MBD = tam giác NCE

=> BM = CN (2 cạnh tương ứng )

Mà :MA + BM = AB, AN + CN = AC

Lại có : AB = AC (gt)

=> AM = AN 

=> tam giác AMN cân tại A

Nếu : ABC là tam giác đều 

=> góc A = 60\(^o\)

=> tam giác AMN là tam giác đều ( tam giác đều là tam giác cân có 1 góc bằng 60\(^o\))

 

 

 

 

a Xét ΔABM và ΔADM có 

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

b: Ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

Suy ra: KB=KD