K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

23 tháng 1 2019

a) ta có: AM = AN ( = 1/2AB = 1/2AC)

=> AMN cân tại A

b) Xét tg ABN và tg ACM

có: AB = AC

^A chung

AN = AM ( = 1/2AB = 1/2AC)

=> tg ABN = tg ACM (c-g-c)

=> BN = CM

c) Xét tg ABC
có: BN cắt CM tại I

=> AI là đường trung tuyến của BC

=> AI là tia pg ^A ( tg ABC cân tại A)

d) ta có: tg ABC cân tại A

AI là đường phân giác

=> AI là đg cao

\(\Rightarrow AI\perp BC\)

ta có: tg AMN cân tại A

AI là đường cao

=> AI vuông góc với MN

...

hình tự vẽ

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔMBC=ΔNCB

b: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)

\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)

nên \(\widehat{ABN}=\widehat{ACM}\)

c: AM+MB=AB

AN+NC=AC

mà AB=AC

và MB=NC

nên AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

26 tháng 7 2023

a) Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Tương tự, ta có AC = AB và N là trung điểm của AC nên AN = NC.
Vậy ta có AM = MB = AN = NC.
Do đó, ta có tứ giác AMNC là hình bình hành.
Vì tứ giác AMNC là hình bình hành nên ta có CM song song với AN và BN song song với AM.
Do đó ta có CM = AN = BN.

b) Đặt I là giao điểm của tia phân giác của góc BAC với BC.
Ta cần chứng minh AI là tia phân giác của góc BAC.
Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Vì AI là tia phân giác của góc BAC nên ta có góc BAI = góc IAC.
Vì AM = MB nên ta có góc BAM = góc ABM.
Do đó ta có góc BAI = góc IAC = góc BAM = góc ABM.
Do đó, ta có tứ giác ABMI là tứ giác cân.
Do đó ta có AI là tia phân giác của góc BAC.

26 tháng 7 2023

a) M, N là trung điểm của AB, AC

Suy ra MN song song BC

mà Góc ABC = Góc ACB (AB=AC nên tam giác ABC cân tại A)

Suy ra MNBC là hình thang cân

Suy ra CM=BN

b) Tam giác ABC cân tại A nên AI là phân giác, trung tuyến, đường cao

29 tháng 7 2017

i A M N B C

a)

Xét \(\Delta\)ABN và \(\Delta\)ACM có

\(\widehat{BAN}\)chung 

AB =AC ( \(\Delta ABC\)cân )

AN = AM ( gt)

\(\Rightarrow\Delta ABN=\Delta ACM\)( c .g . c )

\(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\)

Mà \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{NBC}=\widehat{MCB}\)

Hay\(\widehat{IBC}=\widehat{ICB}\)

\(\Rightarrow\Delta IBC\)cân tại I

b) Ta có AB = AC ( \(\Delta\)ABC cân ) (1)

IB = IC (\(\Delta\)IBC cân ) (2)

Từ (1) và (2) => AI là đường trung trực của BC ( điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 đầu mút )

Chúc bạn học giỏi !!!

29 tháng 7 2017

làm ơn giúp mik với ai giải đúng mik sẽ tích cho