Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇒AM⊥BC(đpcm)
Ta có: M là trung điểm của BC(gt)
nên \(BM=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+MB^2\)
\(\Leftrightarrow AM^2=AB^2-MB^2=5^2-3^2=16\)
hay AM=4(cm)
Vậy: AM=4cm
b) Ta có: AI+IB=AB(I nằm giữa A và B)
AJ+JC=AC(J nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AI=AJ(gt)
nên BI=CJ(đpcm)
Tham khảo:
Vì I là trọng tâm tam giác ABC theo giả thiết nên ta có
\(AI = \dfrac{2}{3}AO = 2IO\)(định lí về trọng tâm trong tam giác)
Tương tự J là trọng tâm tam giác BCD nên ta có :
\(DJ = \dfrac{2}{3}OD = 2OJ\) (định lí về trọng tâm trong tam giác)
Mà OA = OD (giả thiết)
\( \Rightarrow AI = DJ = \dfrac{2}{3}OA = \dfrac{2}{3}OD = 2OI = 2OJ\)
Mà OI = OJ do cùng \( = \dfrac{1}{3}OA = \dfrac{1}{3}OD\)(tính chất trọng tâm trong tam giác)
\( \Rightarrow 2OI = 2OJ = 2\dfrac{1}{3}AO = 2\dfrac{1}{3}OD = IJ\)
\( \Rightarrow AI = DJ = IJ = \dfrac{2}{3}OA = \dfrac{2}{3}OD\)(điều phải chứng minh)
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng