Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Xét}:\)\(\Delta CDE\)\(\text{và}\)\(\Delta CAB\)\(,\)\(\text{ta có:}\)
\(\widehat{C}\)\(:\)\(chung\)
\(\widehat{CDE}=\widehat{CAB}=90^o\)
\(\Rightarrow\Delta CDE\text{∽}\Delta CAB\left(g-g\right)\)
\(\Rightarrow\frac{CD}{DE}=\frac{CA}{AB}\)\(\text{hay}\)\(\frac{2}{DE}=\frac{4}{6}\)
\(\Rightarrow DE=\left(6.2\right):4=3\left(cm\right)\)
a) Áp dụng định lý Thales trong tam giác ABC, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)
b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>ΔADE\(\sim\)ΔABC
b: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
a: BC=căn 15^2+20^2=25cm
EC=25-5=20cm
ED//AC
=>BD/DA=BE/EC=1/4
=>BD/1=DA/4=15/5=3
=>BD=3cm; DA=12cm
EF//AB
=>FC/FA=EC/EB=4
=>FC/4=FA/1=20/5=4
=>FC=16cm; FA=4cm
b: DE=căn 5^2-3^2=4cm
=>C BDE=3+4+5=12cm
C CEF/C CAB=CE/CB=20/25=4/5
=>C CEF=4/5*(15+20+25)=4/5*60=48cm
A B C M E F N
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6
Ta có \(AB^2+AC^2=BC^2\) \(\Rightarrow\Delta ABC\) vuông tại A (pitago đảo) \(\Rightarrow AB\perp AC\)
\(BE=2cm\Rightarrow\) E là trung điểm AB (1) \(\Rightarrow EB=EA\Rightarrow\dfrac{EB}{EA}=1\) (2)
\(\left\{{}\begin{matrix}EF\perp AB\\AB\perp AC\end{matrix}\right.\) \(\Rightarrow\)EF//AC (3)
Từ (1); (3) \(\Rightarrow\) EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow F\) là trung điểm BC \(\Rightarrow FB=FC\Rightarrow\dfrac{FB}{FC}=1\) (4)
Từ (2); (4) \(\Rightarrow\dfrac{FB}{FC}=\dfrac{EB}{EA}\Rightarrow EA.FB=EB.FC\)