K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 11 2018

Ta có \(AB^2+AC^2=BC^2\) \(\Rightarrow\Delta ABC\) vuông tại A (pitago đảo) \(\Rightarrow AB\perp AC\)

\(BE=2cm\Rightarrow\) E là trung điểm AB (1) \(\Rightarrow EB=EA\Rightarrow\dfrac{EB}{EA}=1\) (2)

\(\left\{{}\begin{matrix}EF\perp AB\\AB\perp AC\end{matrix}\right.\) \(\Rightarrow\)EF//AC (3)

Từ (1); (3) \(\Rightarrow\) EF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow F\) là trung điểm BC \(\Rightarrow FB=FC\Rightarrow\dfrac{FB}{FC}=1\) (4)

Từ (2); (4) \(\Rightarrow\dfrac{FB}{FC}=\dfrac{EB}{EA}\Rightarrow EA.FB=EB.FC\)

13 tháng 6 2021

\(\text{Xét}:\)\(\Delta CDE\)\(\text{và}\)\(\Delta CAB\)\(,\)\(\text{ta có:}\)

\(\widehat{C}\)\(:\)\(chung\)

\(\widehat{CDE}=\widehat{CAB}=90^o\)

\(\Rightarrow\Delta CDE\text{∽}\Delta CAB\left(g-g\right)\)

\(\Rightarrow\frac{CD}{DE}=\frac{CA}{AB}\)\(\text{hay}\)\(\frac{2}{DE}=\frac{4}{6}\)

\(\Rightarrow DE=\left(6.2\right):4=3\left(cm\right)\)

13 tháng 6 2021

D B C E A

27 tháng 1 2023

a) Áp dụng định lý Thales trong tam giác ABC, ta có:

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)

b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>ΔADE\(\sim\)ΔABC

b: Xét tứ giác BDEF có 

BD//EF

DE//BF

Do đó: BDEF là hình bình hành

2 tháng 4 2022

Em cảm ơn ạ

4 tháng 8 2017

đề bài quá vô lí

4 tháng 8 2017

vô lí oqr chỗ nào hả bn 

15 tháng 12 2017

46;08.90

a: BC=căn 15^2+20^2=25cm

EC=25-5=20cm

ED//AC

=>BD/DA=BE/EC=1/4

=>BD/1=DA/4=15/5=3

=>BD=3cm; DA=12cm

EF//AB

=>FC/FA=EC/EB=4

=>FC/4=FA/1=20/5=4

=>FC=16cm; FA=4cm

b: DE=căn 5^2-3^2=4cm

=>C BDE=3+4+5=12cm

C CEF/C CAB=CE/CB=20/25=4/5

=>C CEF=4/5*(15+20+25)=4/5*60=48cm

10 tháng 3 2020

nhầm, 2.1,5 = 3, diện tích = 3 nhé :v

10 tháng 3 2020

A B C M E F N

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, MF là đtb của tam giác ABC (câu a) 

=> MF = BC/2 ; BC = 4 (Gt)

=> MF = 2

tương tự tính ra BF = 1,5

=> S BEMF = 4.1,5 = 6